Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 15(10): 16839-16850, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34613693

RESUMO

Low melting point eutectic systems, such as the eutectic gallium-indium (EGaIn) alloy, offer great potential in the domain of nanometallurgy; however, many of their interfacial behaviors remain to be explored. Here, a compositional change of EGaIn nanoalloys triggered by polydopamine (PDA) coating is demonstrated. Incorporating PDA on the surface of EGaIn nanoalloys renders core-shell nanostructures that accompany Ga-In phase separation within the nanoalloys. The PDA shell keeps depleting the Ga3+ from the EGaIn nanoalloys when the synthesis proceeds, leading to a Ga3+-coordinated PDA coating and a smaller nanoalloy. During this process, the eutectic nanoalloys turn into non-eutectic systems that ultimately result in the solidification of In when Ga is fully depleted. The reaction of Ga3+-coordinated PDA-coated nanoalloys with nitrogen dioxide gas is presented as an example for demonstrating the functionality of such hybrid composites. The concept of phase-separating systems, with polymeric reservoirs, may lead to tailored materials and can be explored on a variety of post-transition metals.

2.
Sci Rep ; 11(1): 1690, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462270

RESUMO

An antimicrobial peptide, nisin Z, was embedded within polyelectrolyte multilayers (PEMs) composed of natural polysaccharides in order to explore the potential of forming a multilayer with antimicrobial properties. Using attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR), the formation of carrageenan/chitosan multilayers and the inclusion of nisin Z in two different configurations was investigated. Approximately 0.89 µg cm-2 nisin Z was contained within a 4.5 bilayer film. The antimicrobial properties of these films were also investigated. The peptide containing films were able to kill over 90% and 99% of planktonic and biofilm cells, respectively, against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) strains compared to control films. Additionally, surface topography and wettability studies using atomic force microscopy (AFM) and the captive bubble technique revealed that surface roughness and hydrophobicity was similar for both nisin containing multilayers. This suggests that the antimicrobial efficacy of the peptide is unaffected by its location within the multilayer. Overall, these results demonstrate the potential to embed and protect natural antimicrobials within a multilayer to create functionalised coatings that may be desired by industry, such as in the food, biomaterials, and pharmaceutical industry sectors.


Assuntos
Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Carragenina/química , Quitosana/química , Materiais Revestidos Biocompatíveis/química , Nisina/análogos & derivados , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Nisina/química , Nisina/farmacologia , Staphylococcus aureus/fisiologia , Propriedades de Superfície
3.
J Mater Chem B ; 9(4): 1059-1068, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33400757

RESUMO

Nitric oxide (NO) is an essential signaling molecule with a number of biological functions and holds great promise in biomedical applications. However, NO delivery technologies have been complicated due to the inherent properties of NO which include short half-life and limited transport distance in human tissues. In addition, the biofunctionality of NO is strongly dependent on its concentrations and locations where it is delivered. To achieve controlled NO delivery, many studies have focused on encapsulating NO donors into macromolecular scaffolds or using catalysts to realize in situ NO generation from NO prodrugs. Successful applications have been shown, however NO donor-loaded platforms experience the limitation of finite NO storage capacity. The present study reports the synthesis of a catalyst, copper-doped zeolitic imidazolate framework ZIF-8 (Cu2+/ZIF-8), that is designed to generate NO from naturally occurring endogenous NO donors. By tuning the copper doping percentages, we achieved controlled NO generation from S-nitrosoglutathione (GSNO) and S-nitrosocysteine (CysNO). Cu2+/ZIF-8 particles retained their catalytic potency after 5 NO generation cycles and we showed that our copper-doped ZIF-8 catalyst produced a 10-fold increased amount of NO compared with previous reports. As a proof-of-concept study, we demonstrated the ability of copper-doped ZIF-8 to disperse bacterial biofilms in the presence of GSNO.


Assuntos
Cobre/química , Estruturas Metalorgânicas/química , Óxido Nítrico/síntese química , S-Nitrosotióis/química , Estrutura Molecular , Óxido Nítrico/química , Tamanho da Partícula , Propriedades de Superfície , Zeolitas/química
4.
ACS Infect Dis ; 7(2): 215-253, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33433995

RESUMO

Antibiotic resistance is a critical global healthcare issue that urgently needs new effective solutions. While small molecule antibiotics have been safeguarding us for nearly a century since the discovery of penicillin by Alexander Fleming, the emergence of a new class of antimicrobials in the form of synthetic antimicrobial polymers, which was driven by the advances in controlled polymerization techniques and the desire to mimic naturally occurring antimicrobial peptides, could play a key role in fighting multidrug resistant bacteria in the near future. By harnessing the ability to control chemical and structural properties of polymers almost at will, synthetic antimicrobial polymers can be strategically utilized in combination therapy with various antimicrobial coagents in different formats to yield more potent (synergistic) outcomes. In this review, we present a short summary of the different combination therapies involving synthetic antimicrobial polymers, focusing on their combinations with nitric oxide, antibiotics, essential oils, and metal- and carbon-based inorganics.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla , Polímeros
5.
Angew Chem Int Ed Engl ; 60(10): 5489-5496, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179352

RESUMO

In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain-end fidelity. Screening of various porphyrinic Zr-MOFs (Zn) containing Zn-metalled porphyrinic ligands demonstrated that MOF-525 (Zn) with the smallest size had the best photocatalytic activity in PET-RAFT polymerization, due to enhanced dispersion and light penetration. Oxygen tolerance and temporal control were also demonstrated during MOF catalysed PET-RAFT. Results suggested that the polymerization rates were significantly affected by changing the size and surface area of MOFs, and the heterogeneous MOF photocatalysts could be easily separated and recycled for up to five independent PET-RAFT polymerizations without an obvious decrease in efficiency. Finally, the MOF photocatalysts were utilized to create three-dimensional polymeric objects with high resolution via visible light mediated stereolithography in an open-air environment.

6.
Biomacromolecules ; 21(1): 262-272, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31657209

RESUMO

The development of potent strategies to counter microbial biofilm is an urgent priority in healthcare. The majority of bacterial infections in humans are biofilm related, however, effective treatments are still lacking especially for combating multidrug-resistant (MDR) strains. Herein, we report an effective antibiofilm platform based on the use of synthetic antimicrobial polymers in combination with essential oils, where the antimicrobial polymers play a secondary role as delivery vehicle for essential oils. Two ternary antimicrobial polymers consisting of cationic primary amines, low-fouling oligo(ethylene glycol) and hydrophobic ethylhexyl groups were synthesized in the form of random and block copolymers, and mixed with either carvacrol or eugenol. Coadministration of these compounds improved the efficacy against Pseudomonas aeruginosa biofilms compared to the individual compounds. We observed about a 60-75% and 70-85% biofilm inhibition effect for all tested combinations against wild-type P. aeruginosa PAO1 and MDR strain PA37, respectively, upon 6.5 h of incubation time. While both random and block copolymers demonstrated similar biofilm inhibition potencies in combination with essential oils, only the block copolymer acted synergistically with essential oils in killing biofilm. Treatment of PAO1 biofilm for 20 min with the block copolymer-oil combinations resulted in the killing of >99.99% of biofilm bacteria. This synergistic bactericidal activity is attributed to the targeted delivery of essential oils to the biofilm, driven by the electrostatic interaction between positively charged delivery vehicles, in the form of polymeric micelles, and negatively charged bacteria. This study thus highlights the advantage of combining essential oils and antimicrobial polymers as an effective avenue for antibacterial applications.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Óleos Voláteis/farmacologia , Polímeros/química , Antibacterianos/química , Anti-Infecciosos/farmacologia , Biofilmes/crescimento & desenvolvimento , Cimenos/química , Cimenos/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Difusão Dinâmica da Luz , Eugenol/química , Eugenol/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Óleos Voláteis/administração & dosagem , Óleos Voláteis/química , Polímeros/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Espectrofotometria Ultravioleta
7.
ACS Infect Dis ; 5(8): 1357-1365, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30939869

RESUMO

The failure of many antibiotics in the treatment of chronic infections caused by multidrug-resistant (MDR) bacteria necessitates the development of effective strategies to combat this global healthcare issue. Here, we report an antimicrobial platform based on the synergistic action between commercially available antibiotics and a potent synthetic antimicrobial polymer that consists of three key functionalities: low-fouling oligoethylene glycol, hydrophobic ethylhexyl, and cationic primary amine groups. Checkerboard assays with Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli demonstrated synergy between our synthetic antimicrobial polymer and two antibiotics, doxycycline and colistin. Coadministration of these compounds significantly improved the bacteriostatic efficacy especially against MDR P. aeruginosa strains PA32 and PA37, where the minimal inhibitory concentrations (MICs) of polymer and antibiotics were reduced by at least 4-fold. A synergistic killing activity was observed when the antimicrobial polymer was used in combination with doxycycline, killing >99.999% of planktonic and biofilm P. aeruginosa PAO1 upon a 20 min treatment at a polymer concentration of 128 µg mL-1 (4.6 µM) and doxycycline concentration of 64 µg mL-1 (133.1 µM). In addition, this synergistic combination reduced the rate of resistance development in P. aeruginosa compared to individual compounds and was also capable of reviving susceptibility to treatment in the resistant strains.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Polímeros/farmacologia , Biofilmes/efeitos dos fármacos , Colistina/farmacologia , Doxiciclina/farmacologia , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Polímeros/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos
8.
ACS Biomater Sci Eng ; 5(11): 5881-5887, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405678

RESUMO

The development of novel strategies for the prevention of bacterial infections is of utmost importance because of the exponential growth in the number of patient morbidity related to nosocomial and chronic infections. Nitric oxide (NO) is known to be a potent inhibitor of bacterial growth and adhesion to surfaces. Here, we develop an antibiofilm coating that possesses S-nitrosothiol NO donors via plasma polymerization (PP) for biofilm prevention applications. Cell culture dishes of four different film thicknesses ranging from 125 to 1000 nm were coated via PP using a thiol monomer. The thiol functionality on the substrates was converted to S-nitrosothiol NO precursors using tert-butyl nitrite. The successful conjugation of thiol and subsequent formation of S-nitrosothiol functionalities on the substrates were confirmed using X-ray photoelectron spectroscopy and UV-vis analysis. These coatings are capable of releasing NO over 2 days, and the NO loading is tunable by the polymer film thickness. The antibiofilm activity of the surfaces was assessed using Gram-negative bacteria, Pseudomonas aeruginosa. Higher film thickness (and hence, higher NO loading) demonstrate better antibiofilm activity, and the best performing coating shows 81 and 60% inhibition of bacterial attachment to the surface after exposure to bacterial culture solution for 24 and 36 h, respectively. Overall, the NO-releasing plasma-modified surfaces present a potential viable strategy to inhibit bacterial biofilm formation.

9.
J Mater Chem B ; 6(19): 2945-2959, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254331

RESUMO

The nitric oxide (NO) molecule has gained increasing attention in biological applications to combat biofilm-associated bacterial infections. However, limited NO loading, relatively short half-lives of low molecular weight NO donor compounds, and difficulties in targeted delivery of NO have hindered their practical clinical administration. To overcome these drawbacks, the combination of NO and scaffolds based on biocompatible polymers is an effective way towards realizing the practical utility of NO in biomedical applications. In this regard, the present overview highlights the recent developments in NO-releasing polymeric biomaterials for antimicrobial applications, focusing on antibiofilm treatments and the challenges that need to be overcome.

10.
ACS Macro Lett ; 7(5): 592-597, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35632937

RESUMO

Bacterial biofilms are often difficult to treat and represent the main cause of chronic and recurrent infections. In this study, we report the synthesis of a novel antimicrobial/antibiofilm polymer that consists of biocompatible oligoethylene glycol, hydrophobic ethylhexyl, cationic primary amine, and nitric oxide (NO)-releasing functional groups. The NO-loaded polymer has dual-action capability as it can release NO which triggers the dispersion of biofilm, whereas the polymer can induce bacteria cell death via membrane wall disruption. By functionalizing the polymers with NO, we observed a synergistic effect in biofilm dispersal, planktonic and biofilm killing activities against Pseudomonas aeruginosa. The NO-loaded polymer results in 80% reduction in biofilm biomass and kills >99.999% of planktonic and biofilm P. aeruginosa cells within 1 h of treatment at a polymer concentration of 64 µg mL-1. To achieve this synergistic effect, it is imperative that the NO donors and antimicrobial polymer exist as a single chemical entity, instead of a cocktail physical mixture of two individual components. The excellent antimicrobial/antibiofilm activity of this dual-action polymer suggests the advantages of combination therapy in combating bacterial biofilms.

11.
Int J Biol Macromol ; 61: 102-13, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23831384

RESUMO

Complex coacervation in exfoliated Laponite nanoplatelets and fish gelatin mixtures was studied as a function of four key parameters: pH, ionic strength, gelatin/Laponite weight ratio, and total weight. The aim was to understand how these parameters influence phase separation kinetics, composition, internal structure, and viscoelastic properties of coacervates. By careful experimental design and turbidity measurements, the optimum conditions for coacervation were obtained. Thermogravimetric analysis revealed an outstanding heat-resistance for gelatin/nanoclay coacervates. Finally, structure of the coacervate phase was characterized by oscillatory shear experiments. The storage modulus data was observed to follow a power-law behavior and it was confirmed that under the optimum conditions, the coacervate phase was dense and structured with a characteristic length scale (ξrheol) of ~8.25 nm. Regardless of the physicochemical condition at which complexation occurred, it was shown that the equilibrium structure of the coacervates is related to the kinetics of intermediate and late stages of phase separation; as the new defined kinetics parameter K was observed to be inversely proportional to ξrheol that quantifies the compactness of the coacervate networks.


Assuntos
Gelatina/química , Silicatos/química , Animais , Elasticidade , Peixes , Concentração de Íons de Hidrogênio , Cinética , Substâncias Macromoleculares/química , Nanopartículas/química , Concentração Osmolar , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA