RESUMO
Background and objectives: There is a need to develop objective risk stratification tools to define efficient care pathways for trauma patients. Biomarker-based point of care testing may strengthen existing clinical tools currently available for this purpose. The dysregulation of pro- and anti-inflammatory cytokines in the pathogenesis of organ failure is well recognised. This study was carried out to evaluate whether blood concentrations of IL-6, IL-10, and IL-6:IL-10 ratios in the early stages of the illness are significantly different in patients with worsening organ function. Materials and methods: In this prospective observational cohort study, plasma concentrations of IL-6 and IL-10 on days 1, 3 and 5 were measured in 91 major trauma patients using a multiplexed cytometric bead array approach. A composite measure of adverse outcome - defined as SOFA ≥ 2 or mortality at 7 days, was the primary outcome. IL-6 and IL-10 concentrations in early samples (days 1, 3 & 5) in patients who developed SOFA ≥ 2 on day 7 were compared against those who did not. Similar composite outcome groups at day 5 and in groups with worsening or improving SOFA scores (ΔSOFA) at days 7 and 5 were undertaken as secondary analyses. Results: Stratification on day 7, 44 (48%) patients showed adverse outcomes. These adverse outcomes associated with significantly greater IL-6 concentrations on days 1 and 5 (Day 1: 47.65 [23.24-78.68] Vs 73.69 [39.93 - 118.07] pg/mL, P = 0.040 and Day 5: 12.85 [5.80-19.51] Vs 28.90 [8.78-74.08] pg/mL; P = 0.0019). Similarly, IL-10 levels were significantly greater in the adverse outcome group on days 3 and 5 (Day 3: 2.54 [1.76-3.19] Vs 3.16 [2.68-4.21] pg/mL; P = 0.044 and Day 5: 2.03 [1.65-2.55] Vs 2.90 [2.00-5.06] pg/mL; P <0.001). IL-6 and IL-10 concentrations were also significantly elevated in the adverse outcome groups at day 3 and day 5 when stratified on day 5 outcomes. Both IL-6 and IL-6:IL-10 were found to be significantly elevated on days 1 and 3 when stratified based on ΔSOFA at day 5. This significance was lost when stratified on day 7 scores. Conclusions: Early IL-6 and IL-10 concentrations are significantly greater in patients who develop worsening organ functions downstream. These differences may provide an alternate biomarker-based approach to strengthen risk stratification in trauma patients.
Assuntos
Interleucina-10 , Interleucina-6 , Humanos , Biomarcadores , Interleucinas , Prognóstico , Estudos ProspectivosRESUMO
Asthma is a chronic heterogeneous respiratory condition that is mainly associated with sensitivity to airborne agents such as pollen, dust mite products and fungi. Key pathological features include increased airway inflammation and airway wall remodelling. In particular, goblet cell hyperplasia, combined with excess mucus secretion, impairs clearance of the inhaled foreign material. Furthermore, structural changes such as subepithelial fibrosis and increased smooth muscle hypertrophy collectively contribute to deteriorating airway function and possibility of exacerbations. Current pharmacological therapies focused on airway wall remodelling are limited, and as such, are an area of unmet clinical need. Sensitisation to the fungus, Aspergillus fumigatus, is associated with enhanced asthma severity, bronchiectasis, and hospitalisation. How Aspergillus fumigatus may drive airway structural changes is unclear, although recent evidence points to a central role of the airway epithelium. This review provides an overview of the airway pathology in patients with asthma and fungal sensitisation, summarises proposed airway epithelial cell-fungal interactions and discusses the initiation of a tissue remodelling response. Related findings from in vivo animal models are included given the limited analysis of airway pathology in patients. Lastly, an important role for Aspergillus fumigatus-derived proteases in triggering a cascade of damage-repair events through upregulation of airway epithelial-derived factors is proposed.
RESUMO
Aspergillus fumigatus is an important human respiratory mould pathogen. In addition to a barrier function, airway epithelium elicits a robust defence against inhaled A. fumigatus by initiating an immune response. The manner by which A. fumigatus initiates this response and the reasons for the immunological heterogeneity with different isolates are unclear. Both direct fungal cell wall-epithelial cell interaction and secretion of soluble proteases have been proposed as possible mechanisms. Our aim was to determine the contribution of fungal proteases to the induction of epithelial IL-6 and IL-8 in response to different A. fumigatus isolates. Airway epithelial cells were exposed to conidia from a low or high protease-producing strain of A. fumigatus, and IL-6 and IL-8 gene expression and protein production were quantified. The role of proteases in cytokine production was further determined using specific protease inhibitors. The proinflammatory cytokine response correlated with conidia germination and hyphal extension. IL-8 induction was significantly reduced in the presence of matrix metalloprotease or cysteine protease inhibitors. With a high protease-producing strain of A. fumigatus, IL-6 release was metalloprotease dependent. Dectin-1 antagonism also inhibited the production of both cytokines. In conclusion, A. fumigatus-secreted proteases mediate a proinflammatory response by airway epithelial cells in a strain-dependent manner.
RESUMO
BACKGROUND: Asthma is a chronic inflammatory condition of the airways and patients sensitized to airborne fungi such as Aspergillus fumigatus have more severe asthma. Thickening of the bronchial subepithelial layer is a contributing factor to asthma severity for which no current treatment exists. Airway epithelium acts as an initial defence barrier to inhaled spores, orchestrating an inflammatory response and contributing to subepithelial fibrosis. OBJECTIVE: We aimed to analyse the production of pro-fibrogenic factors by airway epithelium in response to A fumigatus, in order to propose novel anti-fibrotic strategies for fungal-induced asthma. METHODS: We assessed the induction of key pro-fibrogenic factors, TGF-ß1, TGF-ß2, periostin and endothelin-1, by human airway epithelial cells and in mice exposed to A fumigatus spores or secreted fungal factors. RESULTS: Aspergillus fumigatus specifically caused production of endothelin-1 by epithelial cells in vitro but not any of the other pro-fibrogenic factors assessed. A fumigatus also induced endothelin-1 in murine lungs, associated with extensive inflammation and airway remodelling. Using a selective endothelin-1 receptor antagonist, we demonstrated for the first time that endothelin-1 drives many features of airway remodelling and inflammation elicited by A fumigatus. CONCLUSION: Our findings are consistent with the hypothesis that elevated endothelin-1 levels contribute to subepithelial thickening and highlight this factor as a possible therapeutic target for difficult-to-treat fungal-induced asthma.
Assuntos
Remodelação das Vias Aéreas/imunologia , Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Asma/imunologia , Endotelina-1/imunologia , Mucosa Respiratória/imunologia , Animais , Aspergilose/complicações , Aspergilose/patologia , Asma/etiologia , Asma/patologia , Humanos , Masculino , Camundongos , Mucosa Respiratória/patologiaRESUMO
Peritoneal fibrosis is a common complication of abdominal and pelvic surgery, and can also be triggered by peritoneal dialysis, resulting in treatment failure. In these settings, fibrosis is driven by activated myofibroblasts that are considered to be partly derived by mesothelial-to-mesenchymal transition (MMT). We hypothesized that, if the molecular signature of MMT could be better defined, these insights could be exploited to block this pathological cellular transition. Rat peritoneal mesothelial cells were purified by the use of an antibody against HBME1, a protein present on mesothelial cell microvilli, and streptavidin nanobead technology. After exposure of sorted cells to a well-known mediator of MMT, transforming growth factor (TGF)-ß1, RNA sequencing was undertaken to define the transcriptomes of mesothelial cells before and during early-phase MMT. MMT was associated with dysregulation of transcripts encoding molecules involved in insulin-like growth factor (IGF) and bone morphogenetic protein (BMP) signalling. The application of either recombinant BMP4 or IGF-binding protein 4 (IGFBP4) ameliorated TGF-ß1-induced MMT in culture, as judged from the retention of epithelial morphological and molecular phenotypes, and reduced migration. Furthermore, peritoneal tissue from peritoneal dialysis patients showed less prominent immunostaining than control tissue for IGFBP4 and BMP4 on the peritoneal surface. In a mouse model of TGF-ß1-induced peritoneal thickening, BMP4 immunostaining on the peritoneal surface was attenuated as compared with healthy controls. Finally, genetic lineage tracing of mesothelial cells was used in mice with peritoneal injury. In this model, administration of BMP4 ameliorated the injury-induced shape change and migration of mesothelial cells. Our findings demonstrate a distinctive MMT signature, and highlight the therapeutic potential for BMP4, and possibly IGFBP4, to reduce MMT. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Fibrose Peritoneal/genética , Peritônio/metabolismo , Transcriptoma , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Movimento Celular , Forma Celular , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Camundongos Endogâmicos C57BL , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Peritônio/efeitos dos fármacos , Peritônio/patologia , Ratos Wistar , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Daily restricted access to food leads to the development of food anticipatory activity and metabolism, which depends upon an as yet unidentified food-entrainable oscillator(s). A premeal anticipatory peak in circulating hormones, including corticosterone is also elicited by daily restricted feeding. High-fat feeding is associated with elevated levels of corticosterone with disrupted circadian rhythms and a failure to develop robust meal anticipation. It is not clear whether the disrupted corticosterone rhythm, resulting from high-fat feeding contributes to attenuated meal anticipation in high-fat fed rats. Our aim was to better characterize meal anticipation in rats fed a low- or high-fat diet, and to better understand the role of corticosterone in this process. To this end, we utilized behavioral observations, hypothalamic c-Fos expression, and indirect calorimetry to assess meal entrainment. We also used the glucocorticoid receptor antagonist, RU486, to dissect out the role of corticosterone in meal anticipation in rats given daily access to a meal with different fat content. Restricted access to a low-fat diet led to robust meal anticipation, as well as entrainment of hypothalamic c-Fos expression, metabolism, and circulating corticosterone. These measures were significantly attenuated in response to a high-fat diet, and animals on this diet exhibited a postanticipatory rise in corticosterone. Interestingly, antagonism of glucocorticoid activity using RU486 attenuated meal anticipation in low-fat fed rats, but promoted meal anticipation in high-fat-fed rats. These findings suggest an important role for corticosterone in the regulation of meal anticipation in a manner dependent upon dietary fat content.
Assuntos
Antecipação Psicológica , Regulação do Apetite , Ritmo Circadiano , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Comportamento Alimentar , Hidrocortisona/sangue , Hipotálamo/metabolismo , Adaptação Fisiológica , Animais , Antecipação Psicológica/efeitos dos fármacos , Regulação do Apetite/efeitos dos fármacos , Calorimetria Indireta , Ritmo Circadiano/efeitos dos fármacos , Gorduras na Dieta/sangue , Ingestão de Energia , Metabolismo Energético , Ácidos Graxos não Esterificados/administração & dosagem , Ácidos Graxos não Esterificados/sangue , Comportamento Alimentar/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Hipotálamo/efeitos dos fármacos , Masculino , Mifepristona/farmacologia , Atividade Motora , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Fatores de TempoRESUMO
BACKGROUND: In mammals, the synchronized activity of cell autonomous clocks in the suprachiasmatic nuclei (SCN) enables this structure to function as the master circadian clock, coordinating daily rhythms in physiology and behavior. However, the dominance of this clock has been challenged by the observations that metabolic duress can over-ride SCN controlled rhythms, and that clock genes are expressed in many brain areas, including those implicated in the regulation of appetite and feeding. The recent development of mice in which clock gene/protein activity is reported by bioluminescent constructs (luciferase or luc) now enables us to track molecular oscillations in numerous tissues ex vivo. Consequently we determined both clock activities and responsiveness to metabolic perturbations of cells and tissues within the mediobasal hypothalamus (MBH), a site pivotal for optimal internal homeostatic regulation. RESULTS: Here we demonstrate endogenous circadian rhythms of PER2::LUC expression in discrete subdivisions of the arcuate (Arc) and dorsomedial nuclei (DMH). Rhythms resolved to single cells did not maintain long-term synchrony with one-another, leading to a damping of oscillations at both cell and tissue levels. Complementary electrophysiology recordings revealed rhythms in neuronal activity in the Arc and DMH. Further, PER2::LUC rhythms were detected in the ependymal layer of the third ventricle and in the median eminence/pars tuberalis (ME/PT). A high-fat diet had no effect on the molecular oscillations in the MBH, whereas food deprivation resulted in an altered phase in the ME/PT. CONCLUSION: Our results provide the first single cell resolution of endogenous circadian rhythms in clock gene expression in any intact tissue outside the SCN, reveal the cellular basis for tissue level damping in extra-SCN oscillators and demonstrate that an oscillator in the ME/PT is responsive to changes in metabolism.