Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 232: 123342, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36716836

RESUMO

Nanocellulose/polyethylenimine composites have attracted growing attention due to their versatility as new materials for application in different fields. Water remediation is one of the traditional applications of these composites and their investigation as adsorbents for single water pollutants is well established. However, most water resources such as rivers, lakes, and even oceans contain complex mixtures of pollutants. Despite several recently published reviews on water purification technology, they only focused on these material as single pollutant removers and hardly mentioned their capacity to simultaneously recover multiple pollutants. Therefore, there is still a gap in the archived literature considering nanocellulose/polyethylenimine composites targeting water remediation with multiple water pollutants. In this review, methods for synthesizing such composites are classified and compared according to the mechanism of reactions, such as chemical crosslinking and physical adsorption, while outlining advantages and limitations. Then, the water pollutants mainly targeted by those composites are discussed in detail to expound the relationship between the synthesis method and the type and adsorption capacity. Finally, the last section presents challenges and opportunities of these nanocellulose/polyethylenimine composites as emerging sorbents for sustainable multiple water pollutants purification technologies. This review aims to lay out the basis for future developments of these composites for multiple water pollutants.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Poluentes da Água , Purificação da Água , Poluentes Químicos da Água/análise , Polietilenoimina , Água , Adsorção , Purificação da Água/métodos
2.
Bioresour Technol ; 344(Pt B): 126262, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34728360

RESUMO

This study investigated the effects of pretreatment using an acetone-butanol-ethanol (ABE) mixture with and without H2SO4 (H+) as a catalyst on sugar recovery from Salix schwerinii biomass. The sugar recovery was susceptible to both the temperature and the catalyst. Moreover, the relatively higher concentration of ABE (H+ABE4) at 200 °C yielded glucose recovery of 85.5% from the pretreated solid, higher than the recovery under other conditions. This result was mainly attributed to the compositional changes in the biomass, as the xylan and lignin were removed in large quantities by ABE pretreatment at 200 °C. Correspondingly, xylose recovery of 53.8% and glucose recovery of 12.1% were obtained from the liquid in which more sugar degradation products were formed. Ultimately, a fermentation broth containing a low concentration of ABE was successfully employed for pretreatment and showed great potential in producing fermentable sugars from S. schwerinii for biobutanol production.


Assuntos
Acetona , Salix , Etanol , Solventes , Açúcares
3.
RSC Adv ; 9(58): 33755-33760, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35528917

RESUMO

Neutralization is essential to maintain the pH for enzymatic hydrolysis of cellulose followed by fermentation of biofuels. This study investigated the effect of salts formed during the neutralization on the enzymatic hydrolysis of cellulosic materials and acetone-butanol-ethanol (ABE) fermentation. The results showed that the formed Ca-citrate salt considerably decreased the glucose release by 26.9% and 26.1% from Avicel and sulfuric acid-pretreated hybrid Pennisetum, respectively, which was probably due to the unproductive adsorption of cellulases by Ca-citrate solids. On the other hand, the formed soluble Na and Ca salts severely inhibited ABE fermentation, thereby decreasing the ABE concentration from 12.8 g L-1 to 0-10.7 g L-1 in different degrees, but no or slight inhibition was observed when the Ca salts formed as precipitates. In particular, Ca-sulfate did not show apparent inhibition of both hydrolysis and fermentation. Therefore, the selection of suitable pretreatment and neutralizing reagents is an alternative way to avoid process inhibition in biofuel production from lignocellulosic materials.

4.
Bioresour Technol ; 261: 223-231, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29669312

RESUMO

In this work, a simplified and cost-effective chlorite pretreatment method to improve the hydrolysabiliy of biomass was developed. Compared to common used sodium chlorite-acetic acid (SCA) pretreatment (18.1%), sodium chlorite (SC) pretreatment resulted in less xylan loss (7.8%), thus led more carbohydrates retention. Moreover, the Chinese silvergrass pretreated by SC for 2 h achieved higher glucose yield (70.5%) than the substrate pretreated by SCA under the same pretreatment conditions did (58.7%), after 48 h enzymatic hydrolysis by cellulase. By synergistic action of cellulase and xylanase, the glucose yield of SC pretreated (12 h) samples reached to 93.5% with 808.7 mg/g DM total reducing sugars yields. In addition, without the usage of acetic acid could decrease the process cost and result in less inhibitor generation in pretreatment process.


Assuntos
Metabolismo dos Carboidratos , Cloretos/química , Carboidratos , Celulase , Hidrólise , Poaceae
5.
Bioresour Technol ; 257: 113-120, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29494838

RESUMO

This study investigated whether the effectiveness of pretreatment is limited by a size reduction of Norway spruce wood in biobutanol production. The spruce was milled, chipped, and mashed for hydrogen peroxide-acetic acid (HPAC) and dilute acid (DA) pretreatment. Sugar recoveries from chipped and mashed spruce after enzymatic hydrolysis were higher than from milled spruce, and the recoveries were not correlated with the spruce fiber length. HPAC pretreatment resulted in almost 100% glucose and 88% total reducing sugars recoveries from chipped spruce, which were apparently higher than DA pretreatment, demonstrating greater effectiveness of HPAC pretreatment on sugar production. The butanol and ABE yield from chipped spruce were 126.5 and 201.2 g/kg pretreated spruce, respectively. The yields decreased with decreasing particle size due to biomass loss in the pretreatment. The results suggested that Norway spruce chipped to a 20 mm length is applicable to the production of platform sugars for butanol fermentation.


Assuntos
Butanóis , Açúcares , 1-Butanol , Carboidratos , Fermentação , Hidrólise , Noruega
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA