Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Neurosci ; 22(1): 61, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645385

RESUMO

BACKGROUND: Sensory input via neuromuscular electrical stimulation (NMES) may contribute to synchronization between motor cortex and spinal motor neurons and motor performance improvement in healthy adults and stroke patients. However, the optimal NMES parameters used to enhance physiological activity and motor performance remain unclear. In this study, we focused on sensory feedback induced by a beta-band frequency NMES (ß-NMES) based on corticomuscular coherence (CMC) and investigated the effects of ß-NMES on CMC and steady-state of isometric ankle dorsiflexion in healthy volunteers. Twenty-four participants received ß-NMES at the peak beta-band CMC or fixed NMES (f-NMES) at 100 Hz on different days. NMES was applied to the right part of the common peroneal nerve for 20 min. The stimulation intensity was 95% of the motor threshold with a pulse width of 1 ms. The beta-band CMC and the coefficient of variation of force (Force CV) were assessed during isometric ankle dorsiflexion for 2 min. In the complementary experiment, we applied ß-NMES to 14 participants and assessed beta-band CMC and motor evoked potentials (MEPs) with transcranial magnetic stimulation. RESULTS: No significant changes in the means of beta-band CMC, Force CV, and MEPs were observed before and after NMES conditions. Changes in beta-band CMC were correlated to (a) changes in Force CV immediately, at 10 min, and at 20 min after ß-NMES (all cases, p < 0.05) and (b) changes in MEPs immediately after ß-NMES (p = 0.01). No correlations were found after f-NMES. CONCLUSIONS: Our results suggest that the sensory input via NMES was inadequate to change the beta-band CMC, corticospinal excitability, and voluntary motor output. Whereas, the ß-NMES affects the relationship between changes in beta-band CMC, Force CV, and MEPs. These findings may provide the information to develop NMES parameters for neurorehabilitation in patients with motor dysfunction.


Assuntos
Estimulação Elétrica , Potencial Evocado Motor/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Estimulação Elétrica/métodos , Feminino , Humanos , Contração Isométrica/fisiologia , Masculino , Córtex Motor/fisiologia , Nervo Fibular/fisiologia , Tratos Piramidais/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
2.
Front Neurosci ; 15: 632716, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679314

RESUMO

Repetitive peripheral magnetic stimulation (rPMS) may improve motor function following central nervous system lesions, but the optimal parameters of rPMS to induce neural plasticity and mechanisms underlying its action remain unclear. We examined the effects of rPMS over wrist extensor muscles on neural plasticity and motor performance in 26 healthy volunteers. In separate experiments, the effects of rPMS on motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), direct motor response (M-wave), Hoffmann-reflex, and ballistic wrist extension movements were assessed before and after rPMS. First, to examine the effects of stimulus frequency, rPMS was applied at 50, 25, and 10 Hz by setting a fixed total number of stimuli. A significant increase in MEPs of wrist extensors was observed following 50 and 25 Hz rPMS, but not 10 Hz rPMS. Next, we examined the time required to induce plasticity by increasing the number of stimuli, and found that at least 15 min of 50 and 25 Hz rPMS was required. Based on these parameters, lasting effects were evaluated following 15 min of 50 or 25 Hz rPMS. A significant increase in MEP was observed up to 60 min following 50 and 25 Hz rPMS; similarly, an attenuation of SICI and enhancement of ICF were also observed. The maximal M-wave and Hoffmann-reflex did not change, suggesting that the increase in MEP was due to plastic changes at the motor cortex. This was accompanied by increasing force and electromyograms during wrist ballistic extension movements following 50 and 25 Hz rPMS. These findings suggest that 15 min of rPMS with 25 Hz or more induces an increase in cortical excitability of the relevant area rather than altering the excitability of spinal circuits, and has the potential to improve motor output.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA