Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 113: 154689, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36921428

RESUMO

BACKGROUND: Reactive oxygen species (ROS) at low level promotes cell survival through lysosome induced autophagy induction. Glucose stress induced acidosis, hypoxia, ROS, upregulates markers related to cancer stemness and multidrug resistance. Also, lysosomal upregulation is proposed to be one of the important indicators of cell survival under ROS induced stress. Studies supported that, stimulation of Lysosome-TFEB-Ca2+ cascade has important role in induction of chemoresistance and survival of cancerous cells. PURPOSE: To observe the effect of synergistic drug combination, Kaempferol and Verapamil on markers regulating chemoevasion, tumor stemness & acidosis as well as lysosome upregulation pathways, under low as well as high glucose conditions. HYPOTHESIS: Based on our earlier observation as well as previous reports, we hypothesized, our drug combination Kaempferol with Verapamil could attenuate markers related to chemoevasion, tumor stemness & acidosis as well as lysosome-TFEB-Ca2+ pathway, all of which have indispensable association and role in chemoresistance. METHODS: RNA and protein expression of candidate genes, along with ROS production and Ca2+ concentrations were measured in ex vivo models in altered glucose conditions upon treatment with KV. Also, computational approaches were utilized to hypothesize the mechanism of action of the drug combination. PCR, IHC, western blotting and molecular docking approaches were used in this study. RESULTS: The overproduction of ROS by our candidate drugs KV, downregulated the chemoresistance and tumor acidosis markers along with ATP1B1 and resulted in lysosomal disruption with reduction of Ca2+ release, diminishing TFEB expression under low glucose condition. An anomalous outcome was observed in high glucose conditions. We also observed KV promoted the overproduction of ROS levels thereby inducing autophagy-mediated cell death through the upregulation of LC3-II and p62 in low glucose conditions. The ex vivo studies also corroborate with in silico study that exhibited the parallel outcome. CONCLUSION: Our ex-vivo and in-silico studies revealed that our candidate drug combination KV, could effectively target several pathways regulating chemoresistance, that were not hitherto studied in the same experimental setup and thus may be endorsed for therapeutic purposes.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Mama/patologia , Verapamil/farmacologia , Cálcio/metabolismo , Quempferóis/farmacologia , Quempferóis/metabolismo , Simulação de Acoplamento Molecular , Autofagia , Glucose/metabolismo , Lisossomos
2.
Nutrition ; 103-104: 111787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36055123

RESUMO

The roles of gut microorganisms in cancer are diverse. Studies on metagenomics and bioinformatics have documented diverse microbial etiology in different tumors. Evidence supports that a commensal microbiome could provide a promising strategy to treat and prevent cancer through interference in several biologic processes, such as host cell survival and death, host immune function, inflammation, oncogenic signaling, and several hormone receptor signaling and detoxification pathways. The cumulative evidence recommends that metabolites of commensal gut microorganisms (e.g., short-chain fatty acids, omega-3 and -6 fatty acids) play an important role in cancer prevention, with a robust antiproliferative effect of omega-3 fatty acids. Intriguingly, the endocannabinoid system (omega-3 and -6 fatty acid-derived neurotransmitter of the body) shows diverse effects on cancer prevention and oncogenesis depending on the context of the tumor microenvironment. Thus, an interplay of gut microorganisms with their fatty acid metabolites and the endocannabinoid system play an important role in the development, progression, immunomodulation, and chemoresistance of cancer. In this review, we highlight aspects of the current knowledge of and interactions between the microbiome with fatty acids and the host endocannabinoid system. We also document their effect on host immunomodulation and chemoresistance, and discuss how these insights might translate into future development of microbiome-targeted therapeutic interventions.


Assuntos
Ácidos Graxos Ômega-3 , Microbioma Gastrointestinal , Neoplasias , Humanos , Endocanabinoides/farmacologia , Ácidos Graxos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ácidos Graxos Voláteis/metabolismo , Imunomodulação , Imunidade , Ácidos Graxos Ômega-3/farmacologia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
3.
Pathol Res Pract ; 237: 154029, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35961057

RESUMO

Early onset of chemotherapy evasion is a therapeutic challenge. Chemotherapy-induced upregulation of stem cell markers imparts invasiveness and metastatic property to the resident tumor. The efficacy of Kaempferol in attenuating epithelial to mesenchymal transition has earlier been established in the breast cancer cell. In our study population, progression-free survival was observed to be statistically more significant in post-NACT low-grade tumors than the high-grade tumors. Further, in post-NACT TNBCs, high-grade tumors showed a preponderance of strong nuclear p53 expression and very low expression of Caspase 3, indicating that, altered p53 expression predisposes these tumors to apoptosis escape and up-regulation of stemness markers. Herein, we report the robust efficacy of Kaempferol on ex-vivo grown breast tumors, derived from post-NACT TNBC patients, through downregulation of nuclear p53, CD44, ALDH1, NANOG, MDR1, Ki67, BCL2 and upregulation of Caspase 3. Such tumors also showed concurrent deregulated RNA and protein expression of CD44, NANOG, ALDH1 and MDR1 with upregulation of Caspase 3 and cleaved Caspase 3, upon Kaempferol treatment. Validation of efficacy of the treatment dosage of Kaempferol through immunophenotyping on MDA-MB-231, suggested that Kaempferol at its IC-50 dosage was effective against CD44 and CD326 positive breast cancer through deregulating their expression. Protein-protein interaction network through STRING pathway analysis and co-expression study of candidate proteins showed the highest degree of co-expression of p53 and KI-67, CD44, NF- kappaB, ALDH1, NANOG, MDR1, and BCL2. Thus, potentially targetable oncogenic protein markers, that are susceptible to downregulation by Kaempferol, provides insight into biomarker-driven therapeutic approaches with it.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Antígeno Ki-67/metabolismo , Regulação para Baixo , Proteína Supressora de Tumor p53/metabolismo , Caspase 3/metabolismo , Transição Epitelial-Mesenquimal , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Família Aldeído Desidrogenase 1 , Neoplasias da Mama/patologia , Apoptose , Antineoplásicos/uso terapêutico , Inflamação/tratamento farmacológico , RNA , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/patologia
4.
BMC Complement Med Ther ; 22(1): 42, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35152903

RESUMO

BACKGROUND: Antibiotic resistances of pathogens and breast cancer warrant the search for new alternative strategies. Phytoextracts can eradicate microbe-borne diseases as well as cancer with lower side effects compared to conventional antibiotics. AIM: Unripe and ripe Azadirachta indica (neem) seed extracts were explored as potential antibiofilm and anticancer agents in combating multidrug-resistant infectious bacteria as well as anticancer agents against the MDR breast cancer cell lines. METHODS: Shed-dried neem seeds (both unripe and ripe) were pulverized and extracted using methanol. The chemical components were identified with FTIR and gas chromatography - mass spectrometry. Antibiofilm activity of neem seed extracts were assessed in terms of minimum biofilm inhibitory concentration (MBIC), minimum biofilm eradication concentration (MBEC), and fluorescence microscopic studies on Staphylococcus aureus and Vibrio cholerae. Bacterial cells were studied by fluorescence microscopy using acridine orange/ethidium bromide as the staining agents. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were evaluated to observe the antibacterial activities. Cytotoxicity of the extracts against human blood lymphocytes and the anticancer activity against drug-resistant breast cancer cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and fluorescence-activated cell sorting (FACS) studies. RESULTS: 4-Ethyl-2-hydroxy-2-cyclopentene-1-one, phthalic acid, and 2-hexyl-tetrahydro thiophane were the major compounds in unripe neem seed, whereas 3,5-dihydroxy-6-methyl-2,3-dihydro-4-H-pyran-4-one and 4-ethylbenzamide were predominant in ripe neem seed. Triazine derivatives were also common for both the extracts. MBIC values of unripe and ripe neem seed extracts for S. aureus are 75 and 100 µg/mL, respectively, and for V. cholerae, they are 100 and 300 µg/mL, respectively. MBEC values of unripe and ripe seed extracts are 500 and 300 µg/mL, respectively for S. aureus and for V. cholerae the values are 700 and 500 µg/mL, respectively. Fluorescence microscopic studies at 16 and 24 h, after bacterial culture, demonstrate enhanced antibiofilm activity for the ripe seed extract than that of the unripe seeds for both the bacteria. MTT assay reveals lower cytotoxicity of both the extracts towards normal blood lymphocytes, and anticancer activity against breast cancer cell line (MDA-MB-231) with superior activity of ripe seed extract. FACS studies further supported higher anticancer activity for ripe seed extract. CONCLUSIONS: Methanolic extract of neem seeds could substantially inhibit and eradicate biofilm along with their potent antibacterial and anticancer activities. Both the extracts showed higher antibiofilm and antibacterial activity against S. aureus (gram-positive) than V. cholerae (gram-negative). Moreover, ripe seed extract showed higher antibiofilm and anticancer activity than unripe extracts.


Assuntos
Azadirachta , Biofilmes , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Staphylococcus aureus
5.
Toxicol Appl Pharmacol ; 437: 115887, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063459

RESUMO

Chemoresistance is an imminent therapeutic challenge for breast cancer. Previous evidence suggests that breast cancer stem cells (BCSC) develop resistance through upregulation of stemness and chemo-evasion markers viz. SOX2, OCT4, NANOG, MDR1 and CD44, following anticancer chemotherapeutic treatments. Early studies suggest an inhibitory role of Kaempferol in BCSC propagation through downregulation of epithelial to mesenchymal transition. We hypothesized that the pathway involved in chemoresistance could be effectively addressed through Kaempferol (K), alone or in combination with Verapamil (V), which is an inhibitor of MDR1. We used K in combination with V, in multiple assays to determine if there was an inhibitory effect on BCSC. Both K and KV attenuated pH-dependent mammosphere formation in primary BCSC and MDA-MB-231 cells. RNA and protein (immunocytochemistry, western blot) expression of candidate markers viz. SOX2, OCT4, NANOG, MDR1 and CD44 were carried out in the presence or absence of candidate drugs in ex-vivo grown primary BCSC and MDA-MB-231 cell line. Immunoprecipitation assay, cell cycle analysis was carried out in MDA-MB-231. Our candidate drugs were not only anti-proliferative, but also downregulated candidate genes expression at RNA and protein level in both settings, with more robust efficacy in KV treatment than K; induced G2/M dependent cell cycle arrest, and interrupted physical association of CD44 with NANOG as well as MDR1 in MDA-MB-231. In primary tumor explant but not in adjacent normal tissue, our candidate drugs K and KV induced robust γH2AX expression. Thus, our candidate drugs are effective in attenuating BCSC survival.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptores de Hialuronatos/metabolismo , Quempferóis/farmacologia , Proteína Homeobox Nanog/metabolismo , Verapamil/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/genética , Quempferóis/administração & dosagem , Proteína Homeobox Nanog/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Verapamil/administração & dosagem , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA