Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 72(6): 917-24, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18462775

RESUMO

Daily observations of hazardous trace metal concentrations in aerosols in Beijing, China were made in the period from 2001 to 2006. We considered coal combustion as a major source of some anthropogenic metals by achieving a correlation analysis and by investigating enrichment factors and relative composition of metals. A possible extra source of some specific metals, such as Cu and Sb, was brake abrasion particles, however, we did not think the transport-related particle was a major source for the hazardous anthropogenic metals even though they could originate from vehicle exhaust and brake/tire abrasion particles. A time-trend model was used to describe temporal variations of chemical constituent concentrations during the five-year period. Several crustal elements, such as Al, Ti, V, Cr, Mn, Fe, and Co, did not show clear increases, with annual rates of change of -15.2% to 3.6%. On the other hand, serious increasing trends were noted from several hazardous trace metals. Cu, Zn, As, Cd, and Pb, which are derived mainly from anthropogenic sources, such as coal combustion, showed higher annual rate of change (4.9-19.8%, p<0.001) according to the regression model. In particular, the Cd and Pb concentrations increased remarkably. We hypothesize that the trend towards increasing concentrations of metals in the air reflects a change that has occurred in the process of burning coal, whereby the use of higher temperatures for coal combustion has resulted in increased emissions of these metals. The increasing use of low-rank coal may also explain the observed trends. In addition, nonferrous metal smelters are considered as a potential, albeit minor, reason for the increasing atmospheric concentrations of anthropogenic hazardous metals in Beijing city.


Assuntos
Poluentes Atmosféricos/análise , Ar , Substâncias Perigosas/análise , Metais/análise , Oligoelementos/análise , Aerossóis , Ar/análise , Ar/normas , China , Monitoramento Ambiental , Tamanho da Partícula , Análise de Regressão , Urbanização
2.
Chemosphere ; 65(3): 427-35, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16524620

RESUMO

We developed a useful analytical method for the determination of polycyclic aromatic hydrocarbons (PAH) concentrations in the aerosol of China. We used an accelerated solvent extraction (ASE) method for the extraction of PAHs from the aerosol samples, in order to reduce the extraction time and the solvent volume used. The optimum purification method was developed, with aminopropylsilane chemically-bonded stationary-phase column chromatography, in order to remove many co-extractives which cannot be removed by conventional purification methods using silica-gel column chromatography. HPLC/fluorescence detection (FLD) was adopted as the analytical method, because it has very high sensitivity to PAH and it is easy to install, operate, and maintain as compared with GC/MS. With the analytical method developed in this study, the recovery and precision (RSD) for most of the PAHs ranged from 75% to 129% and from 2.8% to 22.7%, respectively. The concentrations of PAHs in the aerosol samples collected from October 2003 to April 2005 in Beijing, China were determined using the newly developed method. SigmaPAHs, which is the sum of the concentrations of all detected PAHs, was 177.8 +/- 239.9 ng m(-3) (n = 64). The SigmaPAHs concentration in the heating season (305.1 +/- 279.0 ng m(-3), n = 33) was 7.2 times higher than that in the non-heating season (42.3 +/- 32.0 ng m(-3), n = 31). These strong seasonal variations in atmospheric PAH concentration are possibly due to coal combustion for residential heating in winter.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Silanos/química , Aerossóis , China , Cromatografia Líquida de Alta Pressão , Fluorescência , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA