Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Sci ; 233: 82-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25711816

RESUMO

Temperature is one of the most significant factors affecting physiological and biochemical aspects of fruit development. Current and progressing global warming is expected to change climate in the traditional deciduous fruit tree cultivation regions. In this study, 'Golden Delicious' trees, grown in a controlled environment or commercial orchard, were exposed to different periods of heat treatment. Early fruitlet development was documented by evaluating cell number, cell size and fruit diameter for 5-70 days after full bloom. Normal activities of molecular developmental and growth processes in apple fruitlets were disrupted under daytime air temperatures of 29°C and higher as a result of significant temporary declines in cell-production and cell-expansion rates, respectively. Expression screening of selected cell cycle and cell expansion genes revealed the influence of high temperature on genetic regulation of apple fruitlet development. Several core cell-cycle and cell-expansion genes were differentially expressed under high temperatures. While expression levels of B-type cyclin-dependent kinases and A- and B-type cyclins declined moderately in response to elevated temperatures, expression of several cell-cycle inhibitors, such as Mdwee1, Mdrbr and Mdkrps was sharply enhanced as the temperature rose, blocking the cell-cycle cascade at the G1/S and G2/M transition points. Moreover, expression of several expansin genes was associated with high temperatures, making them potentially useful as molecular platforms to enhance cell-expansion processes under high-temperature regimes. Understanding the molecular mechanisms of heat tolerance associated with genes controlling cell cycle and cell expansion may lead to the development of novel strategies for improving apple fruit productivity under global warming.


Assuntos
Regulação da Expressão Gênica de Plantas , Temperatura Alta , Malus/crescimento & desenvolvimento , Malus/genética , Proteínas de Plantas/genética , Estresse Fisiológico , Ciclo Celular , Divisão Celular , Proliferação de Células , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Malus/citologia , Malus/metabolismo , Proteínas de Plantas/metabolismo
2.
Tree Physiol ; 35(4): 425-38, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25618897

RESUMO

For isohydric trees mid-day water uptake is stable and depends on soil water status, reflected in pre-dawn leaf water potential (Ψpd) and mid-day stem water potential (Ψmd), tree hydraulic conductance and a more-or-less constant leaf water potential (Ψl) for much of the day, maintained by the stomata. Stabilization of Ψl can be represented by a linear relationship between canopy resistance (Rc) and vapor pressure deficit (D), and the slope (BD) is proportional to the steady-state water uptake. By analyzing sap flow (SF), meteorological and Ψmd measurements during a series of wetting and drying (D/W) cycles in a nectarine orchard, we found that for the range of Ψmd relevant for irrigated orchards the slope of the relationship of Rc to D, BD is a linear function of Ψmd. Rc was simulated using the above relationships, and its changes in the morning and evening were simulated using a rectangular hyperbolic relationship between leaf conductance and photosynthetic irradiance, fitted to leaf-level measurements. The latter was integrated with one-leaf, two-leaf and integrative radiation models, and the latter gave the best results. Simulated Rc was used in the Penman-Monteith equation to simulate tree transpiration, which was validated by comparing with SF from a separate data set. The model gave accurate estimates of diurnal and daily total tree transpiration for the range of Ψmds used in regular and deficit irrigation. Diurnal changes in tree water content were determined from the difference between simulated transpiration and measured SF. Changes in water content caused a time lag of 90-105 min between transpiration and SF for Ψmd between -0.8 and -1.55 MPa, and water depletion reached 3 l h(-1) before noon. Estimated mean diurnal changes in water content were 5.5 l day(-1) tree(-1) at Ψmd of -0.9 MPa and increased to 12.5 l day(-1) tree(-1) at -1.45 MPa, equivalent to 6.5 and 16.5% of daily tree water use, respectively. Sixteen percent of the dynamic water volume was in the leaves. Inversion of the model shows that Ψmd can be predicted from D and Rc, which may have some importance for irrigation management to maintain target values of Ψmd. That relationship will be explored in future research.


Assuntos
Luz , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Transpiração Vegetal , Prunus/fisiologia , Água/fisiologia , Xilema/fisiologia , Modelos Biológicos , Fotossíntese , Exsudatos de Plantas , Prunus/metabolismo , Árvores/metabolismo , Árvores/fisiologia , Água/metabolismo
3.
J Sci Food Agric ; 95(10): 2016-20, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25214192

RESUMO

BACKGROUND: Over the last two decades, the area of cultivated super-high-density olive orchards has increased rapidly. Water stress is an important tool in super-high-density orchards to reduce tree growth and promote suitability for overhead mechanical harvesters. Little is known regarding the effect of water stress in super-high-density orchards on oil quality parameters. In this study the effect of irrigation rate on oil quality parameters was evaluated in a six-year-old super-high-density 'Koreneiki' olive orchard for five consecutive seasons. Five water status levels, determined by irrigating in order to maintain various midday stem water potential threshold values (-1.5, -2, -2.5, -3 and -4 MPa), were applied during the oil accumulation stage. RESULTS: The MUFA/PUFA ratio and free fatty acid content generally decreased as a function of increasing tree water stress. In most seasons a reduction in polyphenols was found with decreasing irrigation level. Peroxide value was not affected by the water stress level. CONCLUSION: The present study demonstrates that limiting irrigation and exposure of olive trees to water stress in a super-high-density orchard lowers free fatty acid content and therefore benefits oil quality. However, the decreased MUFA/PUFA ratio and the reduction in polyphenol content that were also found under increased water stress negatively influence oil quality.


Assuntos
Agricultura/métodos , Olea/fisiologia , Azeite de Oliva/química , Azeite de Oliva/normas , Água , Irrigação Agrícola , Desidratação , Ácidos Graxos/química , Polifenóis/química , Fatores de Tempo
4.
Tree Physiol ; 30(6): 715-27, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20460388

RESUMO

Apple (Malus x domestica Borkh.) grown in a Mediterranean climate depends on regular irrigation throughout the growing season. The objective of the current study was to elucidate the changes in carbohydrate storage and utilization by mature, field-grown apple trees in response to water availability to the trees and to the level of cropping. Fourteen-year-old apple trees cv. 'Golden Delicious' were grown under various combinations of irrigation rate (11, 33 or 77 l day(-)(1) per tree) and crop level ( approximately 100, approximately 300 or >1000 fruits per tree) beginning 47 days after full bloom (DAFB). Non-structural carbohydrate concentrations were measured at 78 (leaves and branch wood), 102 (leaves), 183 (branch wood) and 214 (branch wood) DAFB. Midday stem water potential (SWP) was measured at 2-week intervals between June and October. Trunk cross-sectional area was measured 47 and 265 DAFB. At harvest, 139 DAFB, the fruits of each tree were counted and weighed. SWP at 102 DAFB ranged between -0.6 and -2.7 MPa. Fruit fresh weight at harvest was positively related to SWP measured 37 days before harvest with distinct slopes for light/intermediate and heavy crop levels. Leaf and branch wood starch concentrations 78 and 102 DAFB were positively related to irrigation rate and negatively related to crop level. Mean fruit weight at harvest was positively related to branch wood starch concentration and neared maximum at a concentration of 40 mg g(-)(1) dry weight. Branch wood starch concentration recovered after harvest, especially in water-stressed trees. Sorbitol concentration was negatively related to irrigation rate. The sorbitol-to-starch concentration ratio in leaves at 102 DAFB was closely proportional to SWP. It is suggested that branch wood starch concentration represents the overall balance between carbon sources and sinks and may therefore serve as a reliable indicator of photo-assimilate availability. In water-stressed trees, sorbitol is prioritized over starch, probably to support osmotic adjustment, thereby suppressing fruit growth even further.


Assuntos
Carboidratos/fisiologia , Malus/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Glucose/metabolismo , Israel , Malus/crescimento & desenvolvimento , Malus/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Estações do Ano , Sorbitol/metabolismo , Amido/metabolismo , Temperatura , Árvores/metabolismo , Árvores/fisiologia , Madeira
5.
J Exp Bot ; 58(15-16): 4213-24, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18182426

RESUMO

Dwarfing of fruit trees is often achieved through the use of dwarfing rootstocks. Dwarf trees are characterized by sustained reductions in vegetative growth during the lifetime of the tree. The dwarfing mechanism is not well understood, but it has been hypothesized that hydraulic properties of the rootstock and the graft union are involved. It is hypothesized here that leaf- or stem-specific resistance of at least one hydraulic component of the water transport system would be negatively correlated with rootstock 'vigour', and this could be useful for selection of rootstocks. Hydraulic resistance (R) of fully grown apple trees on a variety of rootstocks of different 'vigours' was measured. Most measurements were with the evaporative flux (EF) method, where water uptake measured with sap flow sensors was related to the pressure gradient from soil (taken as pre-dawn leaf) and midday root (taken as covered root-sucker), stem (from covered leaf), and exposed and shaded leaf water potentials (Psi(l)). R of trees on dwarfing M9 rootstock was compared with that of more vigorous MM106 and MM111 rootstocks in Israel and Vermont, USA. In Israel, M9 consistently had higher leaf-specific hydraulic resistance (R(l)) in the soil to scion stem pathway, but this difference was only significant for one summer. R was larger in M9 between the root and stem, implicating the graft union as the site of increased resistance. In Vermont, R(l) of 9- and 10-year-old trees on six rootstocks of various vigours was not consistently related to vigour, and stem-specific resistance (R(s)) increased with increasing vigour. High pressure flow meter (HPFM) measurements gave a lower R than the EF method in all but one case, perhaps indicating a significant amount of xylem dysfunction in these trees, and demonstrated the increased resistivity of stem sections that included dwarf graft unions as compared with non-graft stem sections. It is concluded that stem- and leaf-specific R are not consistently positively correlated with dwarfing, although the increased resistivity of the graft union in dwarfing rootstocks may influence the transport of water and other elements across the graft union, and therefore be involved in the dwarfing mechanism.


Assuntos
Malus/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Água/fisiologia , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA