RESUMO
BACKGROUND: ISG15 deficiency is a mixed syndrome of Mendelian susceptibility to mycobacterial infections (MSMD), a rare inherited condition characterized primarily by recurrent infections from low-virulence mycobacteria and monogenic type I interferonopathy. OBJECTIVE: To characterize the laboratory and molecular features of two patients from different families affected by the same ISG15 variant. METHODS: We began with clinical characterization and investigation, assessed IL-12/IFN-γ production, performed genetic characterization through WES and Sanger sequencing, conducted an in silico molecular analysis of the genetic ISG15 variant's protein impact, and utilized RNAseq for transcriptome analysis to understand pathway impacts on ISG15-deficient subjects from unrelated families. RESULTS: A mutation in the ISG15 gene was identified, affecting two patients treated in different hospitals and cities in Brazil (Fortaleza and Sao Paulo), who are also members of unrelated families. Both patients showed low IFN-γ production when stimulated with BCG or BCG + IL-12. ISG15 deficiency presented with two distinct clinical phenotypes: infectious and neurological. It was identified that both patients are homozygous for the variant (c.83 T > A). Furthermore, it was observed that the mutant protein p.L28Q results in an unstable protein with increased flexibility (ΔΔG: -2.400 kcal/mol). Transcriptome analysis revealed 1321 differentially expressed genes, with significant upregulation in interferon pathways, showing higher expression in patients compared to controls. CONCLUSION: This study describes the first reported cases in Brazil of two unrelated patients with the same ISG15 mutation c.83 T > A, exhibiting infectious features such as mycobacterial infections and systemic candidiasis, neurological findings, and skin lesions, without adverse reactions to the BCG vaccine. CLINICAL IMPLICATIONS: Reporting ISG15 gene mutations in Brazilian patients enhances understanding of genetic susceptibilities, guiding effective diagnostics and treatment. Identifying high-risk individuals aids clinical practices, genetic counseling, and influences public health policies. We have identified the first case in Brazil of the same ISG15 variant c.83 T > A that was identified in two unrelated patients with distinct clinical phenotypes, infectious and neurological.
Assuntos
Citocinas , Mutação , Ubiquitinas , Humanos , Citocinas/metabolismo , Ubiquitinas/genética , Brasil , Mutação/genética , Masculino , Feminino , Linhagem , Predisposição Genética para Doença , Interferon gama/genética , Lactente , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/etiologia , Pré-Escolar , Fenótipo , CriançaRESUMO
Several perturbations in the number of peripheral blood leukocytes, such as neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID-19) severity, point to systemic molecular cell cycle alterations during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, the landscape of cell cycle alterations in COVID-19 remains primarily unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome and transcriptome data to characterize global changes in the cell cycle signature of COVID-19 patients. We found significantly enriched cell cycle-associated gene co-expression modules and an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating the molecular data of 1469 individuals (981 SARS-CoV-2 infected patients and 488 controls [either healthy controls or individuals with other respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division cycles, cyclin-dependent kinases, and mini-chromosome maintenance proteins. COVID-19 patients partially shared the expression pattern of some cell cycle-associated genes with other respiratory illnesses but exhibited some specific differential features. Notably, the cell cycle signature predominated in the patients' blood leukocytes (B, T, and natural killer cells) and was associated with COVID-19 severity and disease trajectories. These results provide a unique global understanding of distinct alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Transcriptoma , Células Matadoras Naturais , Ciclo CelularRESUMO
CD40 ligand (CD40L) deficiency is a rare inborn error of immunity presenting with heterogeneous clinical manifestations. While a detailed characterization of patients affected by CD40L deficiency is essential to an accurate diagnosis and management, information about this disorder in Latin American patients is limited. We retrospectively analyzed data from 50 patients collected by the Latin American Society for Immunodeficiencies registry or provided by affiliated physicians to characterize the clinical, laboratory, and molecular features of Latin American patients with CD40L deficiency. The median age at disease onset and diagnosis was 7 months and 17 months, respectively, with a median diagnosis delay of 1 year. Forty-seven patients were genetically characterized revealing 6 novel mutations in the CD40LG gene. Pneumonia was the most common first symptom reported (66%). Initial immunoglobulin levels were variable among patients. Pneumonia (86%), upper respiratory tract infections (70%), neutropenia (70%), and gastrointestinal manifestations (60%) were the most prevalent clinical symptoms throughout life. Thirty-five infectious agents were reported, five of which were not previously described in CD40L deficient patients, representing the largest number of pathogens reported to date in a cohort of CD40L deficient patients. The characterization of the largest cohort of Latin American patients with CD40L deficiency adds novel insights to the recognition of this disorder, helping to fulfill unmet needs and gaps in the diagnosis and management of patients with CD40L deficiency.