Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Dysmorphol ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38856641

RESUMO

Camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome (MIM# 208250) is a rare monogenic disorder, characterized by early onset of camptodactyly, progressive coxa vara, bilateral arthropathy and constrictive pericarditis. The syndrome is caused by biallelic loss-of-function variants in PRG4. Deficiency of PRG4 results in progressive worsening of joint deformity with age. Thirteen individuals with CACP syndrome from eight consanguineous Indian families were evaluated. We used exome sequencing to elucidate disease-causing variants in all the probands. These variants were further validated and segregated by Sanger sequencing, confirming the diagnosis of CACP syndrome in them. Seven females and six males aged 2-23 years were studied. Camptodactyly (13/13), coxa vara (11/13), short femoral neck (11/13) and arthritis in large joints (12/13) [wrists (11/13), ankle (11/13), elbow (10/13) and knee (10/13)] were observed commonly. Five novel disease-causing variants (c.3636G>T, c.1935del, c.1134dup, c.1699del and c.962T>A) and two previously reported variants (c.1910_1911del and c.2816_2817del) were identified in homozygous state in PRG4. We describe the phenotype and mutations in one of the large cohorts of patients with CACP syndrome, from India.

2.
Eur J Hum Genet ; 32(8): 1022-1026, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38702430

RESUMO

Orofaciodigital syndrome is a distinctive subtype of skeletal ciliopathies. Disease-causing variants in the genes encoding the CPLANE complex result in a wide variety of skeletal dysplasia with disturbed ciliary functions. The phenotypic spectrum includes orofaciodigital syndrome and short rib polydactyly syndrome. FUZ, as a part of the CPLANE complex, is involved in intraflagellar vesicular trafficking within primary cilia. Previously, the variants, c.98_111+9del and c.851G>T in FUZ were identified in two individuals with a skeletal ciliopathy, manifesting digital anomalies (polydactyly, syndactyly), orofacial cleft, short ribs and cardiac defects. Here, we present two novel variants, c.601G>A and c.625_636del in biallelic state, in two additional subjects exhibiting phenotypic overlap with the previously reported cases. Our findings underscore the association between biallelic loss of function variants in FUZ and skeletal ciliopathy akin to orofaciodigital syndrome.


Assuntos
Síndromes Orofaciodigitais , Humanos , Síndromes Orofaciodigitais/genética , Síndromes Orofaciodigitais/patologia , Masculino , Feminino , Mutação com Perda de Função , Fenótipo , Alelos
3.
Clin Genet ; 105(6): 639-654, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38374498

RESUMO

The application of genomic technologies has led to unraveling of the complex genetic landscape of disorders of epilepsy, gaining insights into their underlying disease mechanisms, aiding precision medicine, and providing informed genetic counseling. We herein present the phenotypic and genotypic insights from 142 Indian families with epilepsy with or without comorbidities. Based on the electroclinical findings, epilepsy syndrome diagnosis could be made in 44% (63/142) of the families adopting the latest proposal for the classification by the ILAE task force (2022). Of these, 95% (60/63) of the families exhibited syndromes with developmental epileptic encephalopathy or progressive neurological deterioration. A definitive molecular diagnosis was achieved in 74 of 142 (52%) families. Infantile-onset epilepsy was noted in 81% of these families (61/74). Fifty-five monogenic, four chromosomal, and one imprinting disorder were identified in 74 families. The genetic variants included 65 (96%) single-nucleotide variants/small insertion-deletions, 1 (2%) copy-number variant, and 1 (2%) triplet-repeat expansion in 53 epilepsy-associated genes causing monogenic disorders. Of these, 35 (52%) variants were novel. Therapeutic implications were noted in 51% of families (38/74) with definitive diagnosis. Forty-one out of 66 families with monogenic disorders exhibited autosomal recessive and inherited autosomal dominant disorders with high risk of recurrence.


Assuntos
Epilepsia , Aconselhamento Genético , Fenótipo , Humanos , Epilepsia/genética , Epilepsia/epidemiologia , Epilepsia/diagnóstico , Índia/epidemiologia , Masculino , Feminino , Criança , Pré-Escolar , Lactente , Predisposição Genética para Doença , Linhagem , Idade de Início , Estudos de Associação Genética , Adolescente , Genótipo , Variações do Número de Cópias de DNA/genética
4.
Neurogenetics ; 25(2): 85-91, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280046

RESUMO

Disease-causing variants in HEPACAM are associated with megalencephalic leukoencephalopathy with subcortical cysts 2A (MLC2A, MIM# 613,925, autosomal recessive), and megalencephalic leukoencephalopathy with subcortical cysts 2B, remitting, with or without impaired intellectual development (MLC2B, MIM# 613,926, autosomal dominant). These disorders are characterised by macrocephaly, seizures, motor delay, cognitive impairment, ataxia, and spasticity. Brain magnetic resonance imaging (MRI) in these individuals shows swollen cerebral hemispheric white matter and subcortical cysts, mainly in the frontal and temporal regions. To date, 45 individuals from 39 families are reported with biallelic and heterozygous variants in HEPACAM, causing MLC2A and MLC2B, respectively. A 9-year-old male presented with developmental delay, gait abnormalities, seizures, macrocephaly, dysarthria, spasticity, and hyperreflexia. MRI revealed subcortical cysts with diffuse cerebral white matter involvement. Whole-exome sequencing (WES) in the proband did not reveal any clinically relevant single nucleotide variants. However, copy number variation analysis from the WES data of the proband revealed a copy number of 4 for exons 3 and 4 of HEPACAM. Validation and segregation were done by quantitative PCR which confirmed the homozygous duplication of these exons in the proband and carrier status in both parents. To the best of our knowledge, this is the first report of an intragenic duplication in HEPACAM causing MLC2A.


Assuntos
Proteínas de Ciclo Celular , Cistos , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Criança , Humanos , Masculino , Proteínas de Ciclo Celular/genética , Cistos/genética , Cistos/diagnóstico por imagem , Variações do Número de Cópias de DNA/genética , Sequenciamento do Exoma , Duplicação Gênica , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Homozigoto , Imageamento por Ressonância Magnética , Linhagem
5.
Am J Med Genet A ; 194(5): e63529, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38179855

RESUMO

Nucleoporins (NUPs) are a group of transporter proteins that maintain homeostasis of nucleocytoplasmic transport of proteins and ribonucleic acids under physiological conditions. Biallelic pathogenic variants in NUP214 are known to cause susceptibility to acute infection-induced encephalopathy-9 (IIAE9, MIM#618426), which is characterized by severe and early-onset febrile encephalopathy causing neuroregression, developmental delay, microcephaly, epilepsy, ataxia, brain atrophy, and early death. NUP214-related IIAE9 has been reported in eight individuals from four distinct families till date. We identified a novel in-frame deletion, c.202_204del p.(Leu68del), in NUP214 by exome sequencing in a 20-year-old male with episodic ataxia, seizures, and encephalopathy, precipitated by febrile illness. Neuroimaging revealed progressive cerebellar atrophy. In silico predictions show a change in the protein conformation that may alter the downstream protein interactions with the NUP214 N-terminal region, probably impacting the mRNA export. We report this novel deletion in NUP214 as a cause for a late onset and less severe form of IIAE9.


Assuntos
Encefalopatia Aguda Febril , Encefalopatias , Epilepsia , Microcefalia , Masculino , Humanos , Adulto Jovem , Adulto , Encefalopatias/diagnóstico , Encefalopatias/genética , Epilepsia/genética , Microcefalia/genética , Atrofia , Complexo de Proteínas Formadoras de Poros Nucleares/genética
6.
Clin Dysmorphol ; 33(1): 27-30, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865862

RESUMO

LPIN2 -related Majeed syndrome (MIM# 609628) is a rare non-inflammasome autoinflammatory disease, caused due to biallelic variants in LPIN2 (MIM* 605519). To date, only 31 individuals from 18 families have been reported with this rare condition. Exome sequencing was done in two affected individuals from two unrelated families. Additionally, phenotypic, and genotypic information from the literature was reviewed. Two novel homozygous missense variants, c.2207G>A p. (Arg736His) and c.1157C>G p. (Ser386Ter) in LPIN2 , were identified in family 1 and family 2 respectively. Chronic recurrent osteomyelitis involving the lower extremities was the most common clinical presentation. LPIN2 -related Majeed syndrome should be considered as a differential diagnosis in an individual with clinical or radiological evidence of recurrent sterile osteomyelitis and chronic anaemia.


Assuntos
Anemia Diseritropoética Congênita , Síndromes de Imunodeficiência , Osteomielite , Humanos , Osteomielite/diagnóstico , Osteomielite/genética , Anemia Diseritropoética Congênita/diagnóstico , Síndrome , Proteínas Nucleares
7.
Eur J Hum Genet ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114583

RESUMO

The contribution of de novo variants as a cause of intellectual disability (ID) is well established in several cohorts reported from the developed world. However, the genetic landscape as well as the appropriate testing strategies for identification of de novo variants of these disorders remain largely unknown in low-and middle-income countries like India. In this study, we delineate the clinical and genotypic spectrum of 54 families (55 individuals) with syndromic ID harboring rare de novo variants. We also emphasize on the effectiveness of singleton exome sequencing as a valuable tool for diagnosing these disorders in resource limited settings. Overall, 46 distinct disorders were identified encompassing 46 genes with 51 single-nucleotide variants and/or indels and two copy-number variants. Pathogenic variants were identified in CREBBP, TSC2, KMT2D, MECP2, IDS, NIPBL, NSD1, RIT1, SOX10, BRWD3, FOXG1, BCL11A, KDM6B, KDM5C, SETD5, QRICH1, DCX, SMARCD1, ASXL1, ASXL3, AKT3, FBN2, TCF12, WASF1, BRAF, SMARCA4, SMARCA2, TUBG1, KMT2A, CTNNB1, DLG4, MEIS2, GATAD2B, FBXW7, ANKRD11, ARID1B, DYNC1H1, HIVEP2, NEXMIF, ZBTB18, SETD1B, DYRK1A, SRCAP, CASK, L1CAM, and KRAS. Twenty-four of these monogenic disorders have not been previously reported in the Indian population. Notably, 39 out of 53 (74%) disease-causing variants are novel. These variants were identified in the genes mainly encoding transcriptional and chromatin regulators, serine threonine kinases, lysosomal enzymes, molecular motors, synaptic proteins, neuronal migration machinery, adhesion molecules, structural proteins and signaling molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA