Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(11): e0062123, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37931130

RESUMO

IMPORTANCE: Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and regulates multiple cell developmental and signaling processes. It also functions as the cell entry receptor for Nipah virus and Hendra virus, zoonotic viruses that can cause respiratory and/or neurological symptoms in humans with high mortality. Here, we investigate the sequence basis of EFNB2 specificity for binding the Nipah virus attachment G glycoprotein over Eph receptors. We then use this information to engineer EFNB2 as a soluble decoy receptor that specifically binds the attachment glycoproteins of the Nipah virus and other related henipaviruses to neutralize infection. These findings further mechanistic understanding of protein selectivity and may facilitate the development of diagnostics or therapeutics against henipavirus infection.


Assuntos
Efrina-B2 , Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Proteínas Virais , Humanos , Efrina-B2/genética , Efrina-B2/metabolismo , Glicoproteínas/metabolismo , Ligantes , Proteínas Virais/metabolismo
2.
bioRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162958

RESUMO

Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and functions as a cell entry receptor for several henipaviruses including Nipah virus (NiV), a pathogenic zoonotic virus with pandemic potential. To understand the sequence basis of promiscuity for EFNB2 binding to the attachment glycoprotein of NiV (NiV-G) and Eph receptors, we performed deep mutagenesis on EFNB2 to identify mutations that enhance binding to NiV-G over EphB2, one of the highest affinity Eph receptors. The mutations highlight how different EFNB2 conformations are selected by NiV-G versus EphB2. Specificity mutations are enriched at the base of the G-H binding loop of EFNB2, especially surrounding a phenylalanine hinge upon which the G-H loop pivots, and at a phenylalanine hook that rotates away from the EFNB2 core to engage Eph receptors. One EFNB2 mutant, D62Q, possesses pan-specificity to the attachment glycoproteins of closely related henipaviruses and has markedly diminished binding to the six Eph receptors. However, EFNB2-D62Q has high residual binding to EphB3 and EphB4. A second deep mutational scan of EFNB2 identified combinatorial mutations to further enhance specificity to NiV-G. A triple mutant of soluble EFNB2, D62Q-Q130L-V167L, has minimal binding to Eph receptors but maintains binding, albeit reduced, to NiV-G. Soluble EFNB2 decoy receptors carrying the specificity mutations were potent neutralizers of chimeric henipaviruses. These findings demonstrate how specific residue changes at the shared binding interface of a promiscuous ligand (EFNB2) can influence selectivity for multiple receptors, and may also offer insight towards the development of henipavirus therapeutics and diagnostics.

3.
EMBO Mol Med ; 14(11): e16109, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36094679

RESUMO

Monoclonal antibodies targeting the SARS-CoV-2 spike (S) neutralize infection and are efficacious for the treatment of COVID-19. However, SARS-CoV-2 variants, notably sublineages of B.1.1.529/omicron, have emerged that escape antibodies in clinical use. As an alternative, soluble decoy receptors based on the host entry receptor ACE2 broadly bind and block S from SARS-CoV-2 variants and related betacoronaviruses. The high-affinity and catalytically active decoy sACE22 .v2.4-IgG1 was previously shown to be effective against SARS-CoV-2 variants when administered intravenously. Here, inhalation of aerosolized sACE22 .v2.4-IgG1 increased survival and ameliorated lung injury in K18-hACE2 mice inoculated with P.1/gamma virus. Loss of catalytic activity reduced the decoy's therapeutic efficacy, which was further confirmed by intravenous administration, supporting dual mechanisms of action: direct blocking of S and turnover of ACE2 substrates associated with lung injury and inflammation. Furthermore, sACE22 .v2.4-IgG1 tightly binds and neutralizes BA.1, BA.2, and BA.4/BA.5 omicron and protects K18-hACE2 mice inoculated with a high dose of BA.1 omicron virus. Overall, the therapeutic potential of sACE22 .v2.4-IgG1 is demonstrated by the inhalation route and broad neutralization potency persists against highly divergent SARS-CoV-2 variants.


Assuntos
COVID-19 , Lesão Pulmonar , Camundongos , Animais , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2/genética , Peptidil Dipeptidase A/metabolismo , Imunoglobulina G , Anticorpos Antivirais , Anticorpos Neutralizantes/uso terapêutico
4.
bioRxiv ; 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35378764

RESUMO

Monoclonal antibodies targeting the SARS-CoV-2 spike (S) glycoprotein neutralize infection and are efficacious for the treatment of mild-to-moderate COVID-19. However, SARS-CoV-2 variants have emerged that partially or fully escape monoclonal antibodies in clinical use. Notably, the BA.2 sublineage of B.1.1.529/omicron escapes nearly all monoclonal antibodies currently authorized for therapeutic treatment of COVID-19. Decoy receptors, which are based on soluble forms of the host entry receptor ACE2, are an alternative strategy that broadly bind and block S from SARS-CoV-2 variants and related betacoronaviruses. The high-affinity and catalytically active decoy sACE2 2 .v2.4-IgG1 was previously shown to be effective in vivo against SARS-CoV-2 variants when administered intravenously. Here, the inhalation of sACE2 2 .v2.4-IgG1 is found to increase survival and ameliorate lung injury in K18-hACE2 transgenic mice inoculated with a lethal dose of the virulent P.1/gamma virus. Loss of catalytic activity reduced the decoy’s therapeutic efficacy supporting dual mechanisms of action: direct blocking of viral S and turnover of ACE2 substrates associated with lung injury and inflammation. Binding of sACE2 2 .v2.4-IgG1 remained tight to S of BA.1 omicron, despite BA.1 omicron having extensive mutations, and binding exceeded that of four monoclonal antibodies approved for clinical use. BA.1 pseudovirus and authentic virus were neutralized at picomolar concentrations. Finally, tight binding was maintained against S from the BA.2 omicron sublineage, which differs from S of BA.1 by 26 mutations. Overall, the therapeutic potential of sACE2 2 .v2.4-IgG1 is further confirmed by inhalation route and broad neutralization potency persists against increasingly divergent SARS-CoV-2 variants.

5.
Front Mol Biosci ; 8: 636660, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898517

RESUMO

Deep mutational scanning or deep mutagenesis is a powerful tool for understanding the sequence diversity available to viruses for adaptation in a laboratory setting. It generally involves tracking an in vitro selection of protein sequence variants with deep sequencing to map mutational effects based on changes in sequence abundance. Coupled with any of a number of selection strategies, deep mutagenesis can explore the mutational diversity available to viral glycoproteins, which mediate critical roles in cell entry and are exposed to the humoral arm of the host immune response. Mutational landscapes of viral glycoproteins for host cell attachment and membrane fusion reveal extensive epistasis and potential escape mutations to neutralizing antibodies or other therapeutics, as well as aiding in the design of optimized immunogens for eliciting broadly protective immunity. While less explored, deep mutational scans of host receptors further assist in understanding virus-host protein interactions. Critical residues on the host receptors for engaging with viral spikes are readily identified and may help with structural modeling. Furthermore, mutations may be found for engineering soluble decoy receptors as neutralizing agents that specifically bind viral targets with tight affinity and limited potential for viral escape. By untangling the complexities of how sequence contributes to viral glycoprotein and host receptor interactions, deep mutational scanning is impacting ideas and strategies at multiple levels for combatting circulating and emergent virus strains.

6.
Sci Adv ; 7(8)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597251

RESUMO

The spike S of SARS-CoV-2 recognizes ACE2 on the host cell membrane to initiate entry. Soluble decoy receptors, in which the ACE2 ectodomain is engineered to block S with high affinity, potently neutralize infection and, because of close similarity with the natural receptor, hold out the promise of being broadly active against virus variants without opportunity for escape. Here, we directly test this hypothesis. We find that an engineered decoy receptor, sACE22v2.4, tightly binds S of SARS-associated viruses from humans and bats, despite the ACE2-binding surface being a region of high diversity. Saturation mutagenesis of the receptor-binding domain followed by in vitro selection, with wild-type ACE2 and the engineered decoy competing for binding sites, failed to find S mutants that discriminate in favor of the wild-type receptor. We conclude that resistance to engineered decoys will be rare and that decoys may be active against future outbreaks of SARS-associated betacoronaviruses.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Tratamento Farmacológico da COVID-19 , Engenharia de Proteínas , SARS-CoV-2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/uso terapêutico , Animais , Linhagem Celular , Quirópteros , Humanos , Mutagênese , Domínios Proteicos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
7.
bioRxiv ; 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33398275

RESUMO

The spike S of SARS-CoV-2 recognizes ACE2 on the host cell membrane to initiate entry. Soluble decoy receptors, in which the ACE2 ectodomain is engineered to block S with high affinity, potently neutralize infection and, due to close similarity with the natural receptor, hold out the promise of being broadly active against virus variants without opportunity for escape. Here, we directly test this hypothesis. We find an engineered decoy receptor, sACE2 2 .v2.4, tightly binds S of SARS-associated viruses from humans and bats, despite the ACE2-binding surface being a region of high diversity. Saturation mutagenesis of the receptor-binding domain (RBD) followed by in vitro selection, with wild type ACE2 and the engineered decoy competing for binding sites, failed to find S mutants that discriminate in favor of the wild type receptor. Variant N501Y in the RBD, which has emerged in a rapidly spreading lineage (B.1.1.7) in England, enhances affinity for wild type ACE2 20-fold but remains tightly bound to engineered sACE22.v2.4. We conclude that resistance to engineered decoys will be rare and that decoys may be active against future outbreaks of SARS-associated betacoronaviruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA