Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Connect Tissue Res ; 63(4): 339-348, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34030523

RESUMO

AIM: Alterations in the microenvironment change the phenotypes of dental pulp stem cells (DPSCs). The role of complement component C5a in the differentiation of DPSCs is unknown, especially under oxygen-deprived conditions. The aim of this study was to determine the effect of C5a on the odontogenic differentiation of DPSCs under normoxia and hypoxia. MATERIAL AND METHODS: Human DPSCs were subjected to odontogenic differentiation in osteogenic media and treated with the C5a receptor antagonist-W54011 under normal and hypoxic conditions (2% oxygen). Immunochemistry, western blot, and PCR analysis for the various odontogenic differentiation genes/proteins were performed. RESULTS: Our results demonstrated that C5a plays a positive role in the odontogenic differentiation of DPSCs. C5a receptor inhibition resulted in a significant decrease in odontogenic differentiation genes, such as DMP1, ON, RUNX2, DSPP compared with the control. This observation was further supported by the Western blot data for DSPP and DMP1 and immunohistochemical analysis. The hypoxic condition reversed this effect. CONCLUSIONS: Our results demonstrate that C5a regulates the odontogenic DPSC differentiation under normoxia. Under hypoxia, C5a exerts a reversed function for DPSC differentiation. Taken together, we identified that C5a and oxygen levels are key initial signals during pulp inflammation to control the odontogenic differentiation of DPSCs, thereby, providing a mechanism for potential therapeutic interventions for dentin repair and vital tooth preservation.


Assuntos
Hipóxia Celular , Polpa Dentária , Receptor da Anafilatoxina C5a , Células-Tronco , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária/citologia , Humanos , Odontogênese/fisiologia , Oxigênio/farmacologia
2.
Front Pharmacol ; 11: 163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194405

RESUMO

Mesenchymal stem cells (MSCs) are multipotent cells with regenerative and immunomodulatory properties. Several aspects of MSC function have been attributed to the paracrine effects of MSC derived extracellular vesicles (EVs). Although MSC EVs show great promise for regenerative medicine applications, insights into their uptake mechanisms by different target cells and the ability to control MSC EV properties for defined function in vivo have remained elusive knowledge gaps. The primary goal of this study is to elucidate how the basic properties of MSC derived EVs can be exploited for function-specific activity in regenerative medicine. Our first important observation is that, MSC EVs possess a common mechanism of endocytosis across multiple cell types. Second, altering the MSC state by inducing differentiation into multiple lineages did not affect the exosomal properties or endocytosis but triggered the expression of lineage-specific genes and proteins in vitro and in vivo respectively. Overall, the results presented in this study show a common mechanism of endocytosis for MSC EVs across different cell types and the feasibility to generate functionally enhanced EVs by modifications to parental MSCs.

3.
Front Physiol ; 9: 495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887803

RESUMO

Dental pulp is a highly vascularized and innervated tissue that provides sensitivity and vitality to the tooth. Chronic caries results in an infected pulp tissue prone to necrosis. Existing clinical treatments replace the living pulp tissue with a non-responsive resin filling resulting in loss of tooth vitality. Tissue engineering approaches to dental pulp tissue regeneration have been investigated to preserve tooth vitality and function. However, a critical criterion is the choice of growth factors that may promote mesenchymal stem cell differentiation and more importantly, vascularization. But, the problems associated with growth factor dosage, delivery, safety, immunological and ectopic complications affect their translatory potential severely. The purpose of this study is to develop, characterize and evaluate a biomimetic native extracellular matrix (ECM) derived dual ECM scaffold that consists of a pulp-specific ECM to promote MSC attachment, proliferation and differentiation and an endothelial ECM to promote migration of host endothelial cells and eventual vascularization in vivo. Our results show that the dual ECM scaffolds possess similar properties as a pulp-ECM scaffold to promote MSC attachment and odontogenic differentiation in vitro. Additionally, when implanted subcutaneously in a tooth root slice model in vivo, the dual ECM scaffolds promoted robust odontogenic differentiation of both dental pulp and bone marrow derived MSCs and also extensive vascularization when compared to respective controls. These scaffolds are mass producible for clinical use and hence have the potential to replace root canal therapy as a treatment for chronic dental caries.

4.
J Endod ; 44(7): 1121-1125, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29884339

RESUMO

INTRODUCTION: The nuclear enzyme poly(adenosine phosphate ribose) polymerase 1 (PARP-1) has been implicated in the maintenance and differentiation of several stem cells. The role of PARP-1 in dental pulp stem cell (DPSC) differentiation, especially in the context of its ability to modulate nerve regeneration factors, has not been investigated. Regeneration of neuronal components in pulp tissue is important for the assessment of tooth vitality. Brain-derived neurotrophic factor (BDNF) is known to play an integral signaling factor during nerve regeneration. In this study, we identified the role of PARP-1 in the modulation of BDNF in DPSC differentiation into odontoblastlike cells. METHODS: Human DPSCs were prepared from healthy molars and cultured in regular and osteogenic media treated with PARP-1 antagonist and PARP-1 exogeneous protein. Polymerase chain reaction and immunohistochemistry analysis for BDNF and various differentiation markers were performed. RESULTS: Our polymerase chain reaction results showed that differentiated cells show odontoblastlike properties because they express odontogenic markers such as dentin sialophosphoprotein and dentin matrix protein 1. Both PARP-1 inhibitor and protein did not affect odontogenic differentiation and proliferation because the number of the differentiated cells was unaffected, and the expression of dentin sialophosphoprotein and dentin matrix protein 1 was not significantly changed. There is the possibility that PARP-1 treatment induces DPSCs into the unique cell lineage. Some differentiated cells show a very unique morphology with large irregular cytoplasm and an oval nucleus. Moreover, PARP-1 inhibition significantly increased BDNF secretion in DPSC-derived odontoblastlike cells. This observation was also confirmed by immunohistochemistry. CONCLUSIONS: Taken together, our results indicate PARP-1 as a negative regulator in BDNF secretion during odontogenic DPSC differentiation, showing its potential application for translational nerve regeneration strategies to improve dental pulp tissue vitality assessments.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Polpa Dentária/citologia , Odontoblastos/citologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Células-Tronco/metabolismo , Western Blotting , Diferenciação Celular , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Humanos , Regeneração Nervosa , Odontoblastos/efeitos dos fármacos , Odontoblastos/metabolismo , Odontogênese , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Endodontia Regenerativa/métodos , Células-Tronco/efeitos dos fármacos
5.
Biomaterials ; 111: 103-115, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27728810

RESUMO

Achieving and maintaining safe and reliable lineage specific differentiation of stem cells is important for clinical translation of tissue engineering strategies. In an effort to circumvent the multitude of problems arising from the usage of growth factors and growth factor delivery systems, we have explored the use of exosomes as biomimetic tools to induce stem cell differentiation. Working on the hypothesis that cell-type specific exosomes can trigger lineage-specific differentiation of stem cells, we have evaluated the potential of exosomes derived from dental pulp cells cultured on under growth and odontogenic differentiation conditions to induce odontogenic differentiation of naïve human dental pulp stem cells (DPSCs) and human bone marrow derived stromal cells (HMSCs) in vitro and in vivo. Results indicate that the exosomes can bind to matrix proteins such as type I collagen and fibronectin enabling them to be tethered to biomaterials. The exosomes are endocytosed by both DPSCs and HMSCs in a dose-dependent and saturable manner via the caveolar endocytic mechanism and trigger the P38 mitogen activated protein kinase (MAPK) pathway. In addition, the exosomes also trigger the increased expression of genes required for odontogenic differentiation. When tested in vivo in a tooth root slice model with DPSCs, the exosomes triggered regeneration of dental pulp-like tissue. However, our results indicate that exosomes isolated under odontogenic conditions are better inducers of stem cell differentiation and tissue regeneration. Overall, our results highlight the potential exosomes as biomimetic tools to induce lineage specific differentiation of stem cells. Our results also show the importance of considering the source and state of exosome donor cells before a choice is made for therapeutic applications.


Assuntos
Materiais Biomiméticos/metabolismo , Polpa Dentária/crescimento & desenvolvimento , Exossomos/metabolismo , Odontogênese/fisiologia , Células-Tronco/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Polpa Dentária/citologia , Humanos , Regeneração/fisiologia , Células-Tronco/citologia
6.
Stem Cells Int ; 2016: 3808674, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26880957

RESUMO

Bone transplantation is one of the most widely performed clinical procedures. Consequently, bone regeneration using mesenchymal stem cells and tissue engineering strategies is one of the most widely researched fields in regenerative medicine. Recent scientific consensus indicates that a biomimetic approach is required to achieve proper regeneration of any tissue. Exosomes are nanovesicles secreted by cells that act as messengers that influence cell fate. Although exosomal function has been studied with respect to cancer and immunology, the role of exosomes as inducers of stem cell differentiation has not been explored. We hypothesized that exosomes can be used as biomimetic tools for regenerative medicine. In this study we have explored the use of cell-generated exosomes as tools to induce lineage specific differentiation of stem cells. Our results indicate that proosteogenic exosomes isolated from cell cultures can induce lineage specific differentiation of naïve MSCs in vitro and in vivo. Additionally, exosomes can also bind to matrix proteins such as type I collagen and fibronectin enabling them to be tethered to biomaterials. Overall, the results from this study show the potential of cell derived exosomes in bone regenerative medicine and opens up new avenues for future research.

7.
Front Physiol ; 6: 292, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26557093

RESUMO

Demineralized bone matrix (DBM) is one of the most widely used bone graft materials in dentistry. However, the ability of DBM to reliably and predictably induce bone regeneration has always been a cause for concern. The quality of DBM varies greatly depending on several donor dependent factors and also manufacturing techniques. In order to standardize the quality and to enable reliable and predictable bone regeneration, we have generated a biomimetically-enhanced version of DBM (BE-DBM) using clinical grade commercial DBM as a control. We have generated the BE-DBM by incorporating a cell-derived pro-osteogenic extracellular matrix (ECM) within clinical grade DBM. In the present study, we have characterized the BE-DBM and evaluated its ability to induce osteogenic differentiation of human marrow derived stromal cells (HMSCs) with respect to clinical grade commercial DBM. Our results indicate that the BE-DBM contains significantly more pro-osteogenic factors than DBM and enhances HMSC differentiation and mineralized matrix formation in vitro and in vivo. Based on our results, we envision that the BE-DBM has the potential to replace DBM as the bone graft material of choice.

8.
PLoS One ; 9(11): e113419, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25427002

RESUMO

Dental-pulp tissue is often exposed to inflammatory injury. Sequested growth factors or angiogenic signaling proteins that are released following inflammatory injury play a pivotal role in the formation of reparative dentin. While limited or moderate angiogenesis may be helpful for dental pulp maintenance, the induction of significant level of angiogenesis is probably highly detrimental. Hitherto, several studies have addressed the effects of proinflammatory stimuli on the survival and differentiation of dental-pulp stem cells (DPSC), in vitro. However, the mechanisms communal to the inflammatory and angiogenic signaling involved in DPSC survival and differentiation remain unknown. Our studies observed that short-term exposure to TNF-α (6 and 12 hours [hrs]) induced apoptosis with an upregulation of VEGF expression and NF-κB signaling. However, long-term (chronic) exposure (14 days) to TNF-α resulted in an increased proliferation with a concomitant shortening of the telomere length. Interestingly, DPSC pretreated with Nemo binding domain (NBD) peptide (a cell permeable NF-κB inhibitor) significantly ameliorated TNF-α- and/or VEGF-induced proliferation and the shortening of telomere length. NBD peptide pretreatment significantly improved TNF-α-induced downregulation of proteins essential for differentiation, such as bone morphogenic proteins (BMP)-1 & 2, BMP receptor isoforms-1&2, trasnforming growth factor (TGF), osteoactivin and osteocalcin. Additionally, inhibition of NF-κB signaling markedly increased the mineralization potential, a process abrogated by chronic exposure to TNF-α. Thus, our studies demonstrated that chronic inflammation mediates telomere shortening via NF-κB signaling in human DPSC. Resultant chromosomal instability leads to an emergence of increased proliferation of DPSC, while negatively regulating the differentiation of DPSC, in vitro.


Assuntos
Polpa Dentária/metabolismo , Osteoblastos/metabolismo , Células-Tronco/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Morfogenética Óssea 1/genética , Proteína Morfogenética Óssea 1/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Diferenciação Celular , Proliferação de Células , Polpa Dentária/irrigação sanguínea , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Glicoproteínas de Membrana , NF-kappa B/genética , NF-kappa B/metabolismo , Neovascularização Patológica , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteocalcina , Peptídeos/farmacologia , Cultura Primária de Células , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Telômero/efeitos dos fármacos , Encurtamento do Telômero/efeitos dos fármacos , Fator de Crescimento Transformador beta1 , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA