Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0297114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271467

RESUMO

This paper presents an innovative approach to wireless cellular stimulation therapy through the design of a magnetoelectric (ME) microdevice. Traditional electrophysiological stimulation techniques for neural and deep brain stimulation face limitations due to their reliance on electronics, electrode arrays, or the complexity of magnetic induction. In contrast, the proposed ME microdevice offers a self-contained, controllable, battery-free, and electronics-free alternative, holding promise for targeted precise stimulation of biological cells and tissues. The designed microdevice integrates core shell ME materials with remote coils which applies magnetic temporal interference (MTI) signals, leading to the generation of a bipolar local electric stimulation current operating at low frequencies which is suitable for precise stimulation. The nonlinear property of the magnetostrictive core enables the demodulation of remotely applied high-frequency electromagnetic fields, resulting in a localized, tunable, and manipulatable electric potential on the piezoelectric shell surface. This potential, triggers electrical spikes in neural cells, facilitating stimulation. Rigorous computational simulations support this concept, highlighting a significantly high ME coupling factor generation of 550 V/m·Oe. The high ME coupling is primarily attributed to the operation of the device in its mechanical resonance modes. This achievement is the result of a carefully designed core shell structure operating at the MTI resonance frequencies, coupled with an optimal magnetic bias, and predetermined piezo shell thickness. These findings underscore the potential of the engineered ME core shell as a candidate for wireless and minimally invasive cellular stimulation therapy, characterized by high resolution and precision. These results open new avenues for injectable material structures capable of delivering effective cellular stimulation therapy, carrying implications across neuroscience medical devices, and regenerative medicine.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Medicina Regenerativa , Fenômenos Físicos , Simulação por Computador , Eletricidade
2.
Nanotechnology ; 30(31): 315501, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30965304

RESUMO

We discuss in detail, the design of a nanorobot that can navigate, detect cancer cells in the blood and actuate the exposure of drugs. The nanorobot is designed with blood energy harvesting capability and the accumulation of electricity in a capacitor, which forms the main body of the nanorobot. Glucose hunger-based cancer detectors immobilized on a carbon nanotube sensor, reduces its electrical resistance when attached to a cancer cell. This mechanism in turn allows electric current to activate a nano-electrical-mechanical relay (mechanical transistor) to break the chamber ceiling exposing a drug identified by the immune system for cell elimination. This concept is in line with the effort to design an autonomous computational nanorobot for in vivo medical diagnosis and treatment. We present this facile approach to design a collective system to visualize the programmability in nanorobots. The calculations and simulation results provide a proof-of-concept towards a plausible implementation. Through this work, we present an overall picture towards an inorganic autonomous computational nanorobot for cancer diagnosis and treatment.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanomedicina/instrumentação , Neoplasias/diagnóstico , Antígenos de Neoplasias/análise , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Capacitância Elétrica , Desenho de Equipamento , Humanos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA