Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 60(15): 11530-11547, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279088

RESUMO

The Cu2+ complexes formed by a series of cyclen derivatives bearing sulfur pendant arms, 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), and 1,7-bis[2-(methylsulfanyl)ethyl]-4,10-diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S), were studied in aqueous solution at 25 °C from thermodynamic and structural points of view to evaluate their potential as chelators for copper radioisotopes. UV-vis spectrophotometric out-of-cell titrations under strongly acidic conditions, direct in-cell UV-vis titrations, potentiometric measurements at pH >4, and spectrophotometric Ag+-Cu2+ competition experiments were performed to evaluate the stoichiometry and stability constants of the Cu2+ complexes. A highly stable 1:1 metal-to-ligand complex (CuL) was found in solution at all pH values for all chelators, and for DO2A2S, protonated species were also detected under acidic conditions. The structures of the Cu2+ complexes in aqueous solution were investigated by UV-vis and electron paramagnetic resonance (EPR), and the results were supported by relativistic density functional theory (DFT) calculations. Isomers were detected that differed from their coordination modes. Crystals of [Cu(DO4S)(NO3)]·NO3 and [Cu(DO2A2S)] suitable for X-ray diffraction were obtained. Cyclic voltammetry (CV) experiments highlighted the remarkable stability of the copper complexes with reference to dissociation upon reduction from Cu2+ to Cu+ on the CV time scale. The Cu+ complexes were generated in situ by electrolysis and examined by NMR spectroscopy. DFT calculations gave further structural insights. These results demonstrate that the investigated sulfur-containing chelators are promising candidates for application in copper-based radiopharmaceuticals. In this connection, the high stability of both Cu2+ and Cu+ complexes can represent a key parameter for avoiding in vivo demetalation after bioinduced reduction to Cu+, often observed for other well-known chelators that can stabilize only Cu2+.


Assuntos
Complexos de Coordenação/química , Radioisótopos de Cobre/análise , Cobre/química , Ciclamos/química , Enxofre/química , Radioisótopos de Cobre/química , Teoria da Densidade Funcional , Modelos Moleculares , Conformação Molecular , Oxirredução
2.
Appl Radiat Isot ; 164: 109263, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32554124

RESUMO

Silver-111 (111Ag, t1/2 = 7.47 d) is a ß- emitter suitable for targeted cancer therapy due to favourable decay properties. The production of no-carrier added 111Ag via Isotope Separation On-Line (ISOL) technique is being investigated at the Legnaro National Laboratories of the Italian Institute of Nuclear Physics (ISOLPHARM project). Stable Cadmium-111 (111Cd) is co-produced as isobaric contaminant, hence a chemical separation process must be developed to selectively harvest 111Ag. In this study, a chromatographic procedure employing the commercially available CL resin was investigated by using stable Ag+ and Cd2+. Results indicate that CL resin allows to efficiently separate Ag+ from Cd2+ and recover the former with high yields.


Assuntos
Radioisótopos/isolamento & purificação , Prata/isolamento & purificação , Extração em Fase Sólida/métodos , Estudo de Prova de Conceito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA