Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Ophthalmol Case Rep ; 22: 101016, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33665475

RESUMO

PURPOSE: This case report highlights the potential for error when removing corneal foreign bodies in a shared speciality area in Accident and Emergency (A&E). OBSERVATIONS: This case presents the accidental use of a silver nitrate stick rather than a cotton bud to remove a corneal foreign body. This resulted in a corneal injury requiring ophthalmological referral and management with topical antibiotics, topical steroids and lubricants. CONCLUSIONS: Mistaking a silver nitrate stick for a cotton bud is a tangible risk in a busy A&E and can result in significant corneal injury. Clinicians and departments can greatly reduce this risk by having separate and secure storage of similar consumables, as well as keeping consumables in original packaging and discarding of the remainder after a pack has been opened. Minimizing the risk for error will better safeguard and improve patient safety.

2.
Development ; 141(7): 1514-25, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24598166

RESUMO

The larval epidermis of Xenopus is a bilayered epithelium, which is an excellent model system for the study of the development and function of mucosal and mucociliary epithelia. Goblet cells develop in the outer layer while multiciliated cells and ionocytes sequentially intercalate from the inner to the outer layer. Here, we identify and characterise a fourth cell type, the small secretory cell (SSC). We show that the development of these cells is controlled by the transcription factor Foxa1 and that they intercalate into the outer layer of the epidermis relatively late, at the same time as embryonic hatching. Ultrastructural and molecular characterisation shows that these cells have an abundance of large apical secretory vesicles, which contain highly glycosylated material, positive for binding of the lectin, peanut agglutinin, and an antibody to the carbohydrate epitope, HNK-1. By specifically depleting SSCs, we show that these cells are crucial for protecting the embryo against bacterial infection. Mass spectrometry studies show that SSCs secrete a glycoprotein similar to Otogelin, which may form the structural component of a mucus-like protective layer, over the surface of the embryo, and several potential antimicrobial substances. Our study completes the characterisation of all the epidermal cell types in the early tadpole epidermis and reinforces the suitability of this system for the in vivo study of complex epithelia, including investigation of innate immune defences.


Assuntos
Epiderme/embriologia , Epiderme/imunologia , Células Caliciformes/imunologia , Imunidade Inata/fisiologia , Xenopus/embriologia , Xenopus/microbiologia , Animais , Diferenciação Celular/fisiologia , Cílios/imunologia , Embrião não Mamífero , Epiderme/metabolismo , Glicoproteínas/análise , Glicoproteínas/metabolismo , Fator 3-alfa Nuclear de Hepatócito/fisiologia , Íons/metabolismo , Larva , Muco/química , Muco/metabolismo , Via Secretória/imunologia , Vesículas Secretórias/imunologia , Vesículas Secretórias/metabolismo , Xenopus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA