Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 208: 643-656, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722569

RESUMO

Synaptic signaling depends on ATP generated by mitochondria. Dysfunctional mitochondria shift the redox balance towards a more oxidative environment. Due to extensive connectivity, the striatum is especially vulnerable to mitochondrial dysfunction. We found that neuronal calcium-binding protein 2 (NECAB2) plays a role in striatal function and mitochondrial homeostasis. NECAB2 is a predominantly endosomal striatal protein which partially colocalizes with mitochondria. This colocalization is enhanced by mild oxidative stress. Global knockout of Necab2 in the mouse results in increased superoxide levels, increased DNA oxidation and reduced levels of the antioxidant glutathione which correlates with an altered mitochondrial shape and function. Striatal mitochondria from Necab2 knockout mice are more abundant and smaller and characterized by a reduced spare capacity suggestive of intrinsic uncoupling respectively mitochondrial dysfunction. In line with this, we also found an altered stress-induced interaction of endosomes with mitochondria in Necab2 knockout striatal cultures. The predominance of dysfunctional mitochondria and the pro-oxidative redox milieu correlates with a loss of striatal synapses and behavioral changes characteristic of striatal dysfunction like reduced motivation and altered sensory gating. Together this suggests an involvement of NECAB2 in an endosomal pathway of mitochondrial stress response important for striatal function.


Assuntos
Antioxidantes , Corpo Estriado , Estresse Oxidativo , Animais , Camundongos , Antioxidantes/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Olho/metabolismo , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Corpo Estriado/fisiologia
2.
Front Psychiatry ; 14: 1199097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547211

RESUMO

Autism spectrum disorder (ASD) comprises a wide range of neurodevelopment conditions primarily characterized by impaired social interaction and repetitive behavior, accompanied by a variable degree of neuropsychiatric characteristics. Synaptic dysfunction is undertaken as one of the key underlying mechanisms in understanding the pathophysiology of ASD. The excitatory/inhibitory (E/I) hypothesis is one of the most widely held theories for its pathogenesis. Shifts in E/I balance have been proven in several ASD models. In this study, we investigated three mouse lines recapitulating both idiopathic (the BTBR strain) and genetic (Fmr1 and Shank3 mutants) forms of ASD at late infancy and early adulthood. Using receptor autoradiography for ionotropic excitatory (AMPA and NMDA) and inhibitory (GABAA) receptors, we mapped the receptor binding densities in brain regions known to be associated with ASD such as prefrontal cortex, dorsal and ventral striatum, dorsal hippocampus, and cerebellum. The individual mouse lines investigated show specific alterations in excitatory ionotropic receptor density, which might be accounted as specific hallmark of each individual line. Across all the models investigated, we found an increased binding density to GABAA receptors at adulthood in the dorsal hippocampus. Interestingly, reduction in the GABAA receptor binding density was observed in the cerebellum. Altogether, our findings suggest that E/I disbalance individually affects several brain regions in ASD mouse models and that alterations in GABAergic transmission might be accounted as unifying factor.

3.
Front Neuroanat ; 17: 1200196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426902

RESUMO

The proper preservation of human brain tissue is an indispensable requirement for post-mortem investigations. Neuroanatomical teaching, neuropathological examination, neurosurgical training, basic and clinical neuroscientific research are some of the possible downstream applications of brain specimens and, although much apart from one another, proper tissue fixation and preservation is a common denominator to all of them. In this review, the most relevant procedures to fixate brain tissue are described. In situ and immersion fixation approaches have been so far the most widespread ways to deliver the fixatives inside the skull. Although most of them rely on the use of formalin, alternative fixative solutions containing lower amounts of this compound mixed with other preservative agents, have been attempted. The combination of fixation and freezing paved the way for fiber dissection, particularly relevant for the neurosurgical practice and clinical neuroscience. Moreover, special techniques have been developed in neuropathology to tackle extraordinary problems, such as the examination of highly infective specimens, as in the case of the Creutzfeldt-Jakob encephalopathy, or fetal brains. Fixation is a fundamental prerequisite for further staining of brain specimens. Although several staining techniques have been developed for the microscopical investigation of the central nervous system, numerous approaches are also available for staining macroscopic brain specimens. They are mostly relevant for neuroanatomical and neuropathological teaching and can be divided in white and gray matter staining techniques. Altogether, brain fixation and staining techniques are rooted in the origins of neuroscience and continue to arouse interest in both preclinical and clinical neuroscientists also nowadays.

4.
Front Psychiatry ; 14: 1110525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970280

RESUMO

Autism spectrum disorder (ASD) comprises a wide range of neurodevelopmental phenotypes united by impaired social interaction and repetitive behavior. Environmental and genetic factors are associated with the pathogenesis of ASD, while other cases are classified as idiopathic. The dopaminergic system has a profound impact in the modulation of motor and reward-motivated behaviors, and defects in dopaminergic circuits are implicated in ASD. In our study, we compare three well-established mouse models of ASD, one idiopathic, the BTBR strain, and two syndromic, Fmr1 and Shank3 mutants. In these models, and in humans with ASD, alterations in dopaminergic metabolism and neurotransmission were highlighted. Still, accurate knowledge about the distribution of dopamine receptor densities in the basal ganglia is lacking. Using receptor autoradiography, we describe the neuroanatomical distribution of D1 and D2 receptors in dorsal and ventral striatum at late infancy and adulthood in the above-mentioned models. We show that D1 receptor binding density is different among the models irrespective of the region. A significant convergence in increased D2 receptor binding density in the ventral striatum at adulthood becomes apparent in BTBR and Shank3 lines, and a similar trend was observed in the Fmr1 line. Altogether, our results confirm the involvement of the dopaminergic system, showing defined alterations in dopamine receptor binding density in three well-established ASD lines, which may provide a plausible explanation to some of the prevalent traits of ASD. Moreover, our study provides a neuroanatomical framework to explain the utilization of D2-acting drugs such as Risperidone and Aripiprazole in ASD.

5.
J Neurochem ; 159(3): 452-478, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34478569

RESUMO

Autism spectrum disorder (ASD) comprises a group of multifactorial neurodevelopmental disorders primarily characterized by deficits in social interaction and repetitive behavior. Although the onset is typically in early childhood, ASD poses a lifelong challenge for both patients and caretakers. Adult neurogenesis (AN) is the process by which new functional neurons are created from neural stem cells existing in the post-natal brain. The entire event is based on a sequence of cellular processes, such as proliferation, specification of cell fate, maturation, and ultimately, synaptic integration into the existing neural circuits. Hence, AN is implicated in structural and functional brain plasticity throughout life. Accumulating evidence shows that impaired AN may underlie some of the abnormal behavioral phenotypes seen in ASD. In this review, we approach the interconnections between the molecular pathways related to AN and ASD. We also discuss existing therapeutic approaches targeting such pathways both in preclinical and clinical studies. A deeper understanding of how ASD and AN reciprocally affect one another could reveal important converging pathways leading to the emergence of psychiatric disorders.


Assuntos
Transtorno do Espectro Autista/patologia , Neurogênese/fisiologia , Adulto , Animais , Transtorno do Espectro Autista/genética , Pré-Escolar , Humanos , Células-Tronco Neurais , Transtornos do Neurodesenvolvimento , Neurogênese/genética
6.
Am Surg ; 87(11): 1823-1826, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33720793

RESUMO

Carl Florian Toldt was an Austrian anatomist who made meaningful contributions worldwide and defined what is one of the most important surgical landmarks in abdominal surgery. Through his research studies, the embryologic dissection plane known as the "White Line of Toldt" represents an important anatomical landmark that helps to mobilize either the ascending or descending colon. His career spanned over 45 years, beginning in Verona and continuing to Prague and Vienna. He was an author of several innovative books and scientific articles regarding micro- and macroscopic anatomy. In addition, he received numerous recognitions and prizes for his work, making him an essential figure in the medical scientific community. Even a street in Vienna, Karl-Toldt-Weg, is named in his honor. The purpose of this historical article is to celebrate and honor Toldt 100 years following his death, remembering his scientific contributions to the medical and surgical fields and giving thanks for his numerous accomplishments. This article brings light to the man behind the eponym.


Assuntos
Anatomia/história , Peritônio/anatomia & histologia , Áustria-Hungria , Colo/cirurgia , Dissecação , Histologia/história , História do Século XIX , História do Século XX , Humanos , Itália , Mesocolo/anatomia & histologia , Mesocolo/cirurgia , Peritônio/cirurgia , Espaço Retroperitoneal/anatomia & histologia , Espaço Retroperitoneal/cirurgia
7.
J Mol Med (Berl) ; 99(2): 161-178, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33340060

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition primarily characterized by an impairment of social interaction combined with the occurrence of repetitive behaviors. ASD starts in childhood and prevails across the lifespan. The variability of its clinical presentation renders early diagnosis difficult. Mutations in synaptic genes and alterations of mitochondrial functions are considered important underlying pathogenic factors, but it is obvious that we are far from a comprehensive understanding of ASD pathophysiology. At the synapse, mitochondria perform diverse functions, which are clearly not limited to their classical role as energy providers. Here, we review the current knowledge about mitochondria at the synapse and summarize the mitochondrial disturbances found in mouse models of ASD and other ASD-related neurodevelopmental disorders, like DiGeorge syndrome, Rett syndrome, Tuberous sclerosis complex, and Down syndrome.


Assuntos
Mitocôndrias/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Sinapses/metabolismo , Animais , Humanos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA