Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Med Chem ; 67(5): 3400-3418, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38387069

RESUMO

The use of ß-lactam (BL) and ß-lactamase inhibitor combination to overcome BL antibiotic resistance has been validated through clinically approved drug products. However, unmet medical needs still exist for the treatment of infections caused by Gram-negative (GN) bacteria expressing metallo-ß-lactamases. Previously, we reported our effort to discover pan inhibitors of three main families in this class: IMP, VIM, and NDM. Herein, we describe our work to improve the GN coverage spectrum in combination with imipenem and relebactam. This was achieved through structure- and property-based optimization to tackle the GN cell penetration and efflux challenges. A significant discovery was made that inhibition of both VIM alleles, VIM-1 and VIM-2, is essential for broad GN coverage, especially against VIM-producing P. aeruginosa. In addition, pharmacokinetics and nonclinical safety profiles were investigated for select compounds. Key findings from this drug discovery campaign laid the foundation for further lead optimization toward identification of preclinical candidates.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Humanos , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Inibidores de beta-Lactamases/química , Antibacterianos/química , Imipenem/farmacologia , beta-Lactamases , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
2.
ACS Med Chem Lett ; 13(8): 1255-1261, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978702

RESUMO

The combination of insulin and incretin-based therapies has emerged as a potential promising tactic for the treatment of diabetes. Here we report the first example of a unimolecular triagonist to simultaneously target insulin, GLP-1, and glucagon receptors, aiming for better glycemic control and superior weight loss. The strategy for constructing such a unimolecular triagonist is the conjugation of the insulin moiety and GLP-1R/GCGR coagonist peptide via alkyne-azide click chemistry. Two tractable series differentiated by insulin conjugation sites, B1F and B29K, were identified. Triagonist 13 prepared through the conjugation at insulin B1F and position 24 of GLP-1R/GCGR coagonist exhibited insulin activity comparable to that of insulin degludec and potent and balanced GLP-1R and GCGR activities. Pharmacokinetic profiles of 13 in both rat and minipig were also discussed.

3.
J Med Chem ; 65(7): 5593-5605, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35298158

RESUMO

We have identified a series of novel insulin receptor partial agonists (IRPAs) with a potential to mitigate the risk of hypoglycemia associated with the use of insulin as an antidiabetic treatment. These molecules were designed as dimers of native insulin connected via chemical linkers of variable lengths with optional capping groups at the N-terminals of insulin chains. Depending on the structure, the maximal activation level (%Max) varied in the range of ∼20-70% of native insulin, and EC50 values remained in sub-nM range. Studies in minipig and dog demonstrated that IRPAs had sufficient efficacy to normalize plasma glucose levels in diabetes, while providing reduction of hypoglycemia risk. IRPAs had a prolonged duration of action, potentially making them suitable for once-daily dosing. Two lead compounds with %Max values of 30 and 40% relative to native insulin were selected for follow up studies in the clinic.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Animais , Glicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cães , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Receptor de Insulina , Suínos , Porco Miniatura , Índice Terapêutico
4.
Bioorg Med Chem Lett ; 29(11): 1380-1385, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30952592

RESUMO

The parallel medicinal chemistry (PMC) was effectively applied to accelerate the optimization of diacylglycerol O-acyltransferase I (DGAT-1) inhibitors. Through a highly collaborative and iterative library design, synthesis and testing, a benzimidazole lead was rapidly and systematically advanced to a highly potent, selective and bioavailable DGAT1 inhibitor with the potential for further development.


Assuntos
Benzimidazóis/farmacologia , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Benzimidazóis/síntese química , Benzimidazóis/química , Química Farmacêutica , Diacilglicerol O-Aciltransferase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 29(10): 1182-1186, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30926247

RESUMO

Previously disclosed benzimidazole-based DGAT1 inhibitors containing a cyclohexane carboxylic acid moiety suffer from isomerization at the alpha position of the carboxylic acid group, generating active metabolites which exhibit DGAT1 inhibition comparable to the corresponding parent compounds. In this report, we describe the design, synthesis and profiling of benzimidazole-based DGAT1 inhibitors with a [3.1.0] bicyclohexane carboxylic acid moiety. Our results show that single isomer 3A maintains in vitro and in vivo inhibition against DGAT1. In contrast to previous lead compounds, 3A does not undergo isomerization during in vitro hepatocyte incubation study or in vivo mouse study.


Assuntos
Benzimidazóis/química , Ácidos Carboxílicos/química , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Inibidores Enzimáticos/química , Animais , Benzimidazóis/metabolismo , Ácidos Carboxílicos/metabolismo , Cromatografia Líquida de Alta Pressão , Cicloexanonas/química , Diacilglicerol O-Aciltransferase/metabolismo , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/metabolismo , Hepatócitos/química , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Isomerismo , Espectrometria de Massas , Camundongos , Ratos
6.
Bioorg Med Chem Lett ; 29(24): 126104, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389294

RESUMO

Hepatitis C virus (HCV) NS5B polymerase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Several novel and potent HCV NS5B non-nucleoside inhibitors with unique tetracyclic bezonfuran-based structures were prepared and evaluated. Similar to clinical developmental compound MK-8876, N-linked (compounds 1 and 2) and C-linked (compounds 3 and 4) tetracyclic structures maintained broad spectrum anti-replicon potency profiles and demonstrated moderate to excellent oral bioavailability and pharmacokinetic parameters across the three preclinical animal species. To better understand the importance of tetracyclic structures related to pan genotypic potency profiles especially against clinically relevant GT1a variants, the teracycles with different ring size were prepared and in vitro evaluations suggested compounds with six number ring have better overall potency profiles.


Assuntos
Antivirais/farmacologia , Benzofuranos/farmacologia , Desenho de Fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Benzofuranos/síntese química , Benzofuranos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
8.
JCI Insight ; 3(1)2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29321379

RESUMO

Hypoglycemia is commonly associated with insulin therapy, limiting both its safety and efficacy. The concept of modifying insulin to render its glucose-responsive release from an injection depot (of an insulin complexed exogenously with a recombinant lectin) was proposed approximately 4 decades ago but has been challenging to achieve. Data presented here demonstrate that mannosylated insulin analogs can undergo an additional route of clearance as result of their interaction with endogenous mannose receptor (MR), and this can occur in a glucose-dependent fashion, with increased binding to MR at low glucose. Yet, these analogs retain capacity for binding to the insulin receptor (IR). When the blood glucose level is elevated, as in individuals with diabetes mellitus, MR binding diminishes due to glucose competition, leading to reduced MR-mediated clearance and increased partitioning for IR binding and consequent glucose lowering. These studies demonstrate that a glucose-dependent locus of insulin clearance and, hence, insulin action can be achieved by targeting MR and IR concurrently.


Assuntos
Glucose/metabolismo , Hipoglicemia/tratamento farmacológico , Insulina/farmacologia , Animais , Antígenos CD , Glicemia , Linhagem Celular , Diabetes Mellitus Tipo 2 , Modelos Animais de Doenças , Hipoglicemiantes/farmacologia , Lectinas Tipo C/efeitos dos fármacos , Fígado/patologia , Macrófagos , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Receptor de Insulina/efeitos dos fármacos , Receptores de Superfície Celular/efeitos dos fármacos
9.
Diabetes ; 67(2): 299-308, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097375

RESUMO

Insulin has a narrow therapeutic index, reflected in a small margin between a dose that achieves good glycemic control and one that causes hypoglycemia. Once injected, the clearance of exogenous insulin is invariant regardless of blood glucose, aggravating the potential to cause hypoglycemia. We sought to create a "smart" insulin, one that can alter insulin clearance and hence insulin action in response to blood glucose, mitigating risk for hypoglycemia. The approach added saccharide units to insulin to create insulin analogs with affinity for both the insulin receptor (IR) and mannose receptor C-type 1 (MR), which functions to clear endogenous mannosylated proteins, a principle used to endow insulin analogs with glucose responsivity. Iteration of these efforts culminated in the discovery of MK-2640, and its in vitro and in vivo preclinical properties are detailed in this report. In glucose clamp experiments conducted in healthy dogs, as plasma glucose was lowered stepwise from 280 mg/dL to 80 mg/dL, progressively more MK-2640 was cleared via MR, reducing by ∼30% its availability for binding to the IR. In dose escalations studies in diabetic minipigs, a higher therapeutic index for MK-2640 (threefold) was observed versus regular insulin (1.3-fold).


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Desenho de Fármacos , Hipoglicemiantes/uso terapêutico , Insulina Regular Humana/análogos & derivados , Lectinas Tipo C/agonistas , Lectinas de Ligação a Manose/agonistas , Receptor de Insulina/agonistas , Receptores de Superfície Celular/agonistas , Animais , Animais Endogâmicos , Ligação Competitiva , Células CHO , Cricetulus , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Cães , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Hiperglicemia/prevenção & controle , Hipoglicemia/induzido quimicamente , Hipoglicemia/prevenção & controle , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/farmacocinética , Insulina Regular Humana/efeitos adversos , Insulina Regular Humana/farmacocinética , Insulina Regular Humana/uso terapêutico , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligantes , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Taxa de Depuração Metabólica , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapêutico , Suínos , Porco Miniatura
10.
Bioorg Med Chem Lett ; 27(5): 1124-1128, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28185720

RESUMO

The paper describes the SAR/SPR studies that led to the discovery of phenoxy cyclopropyl phenyl acetamide derivatives as potent and selective GPR119 agonists. Based on a cis cyclopropane scaffold discovered previously, phenyl acetamides such as compound 17 were found to have excellent GPR119 potency and improved physicochemical properties. Pharmacokinetic data of compound 17 in rat, dog and rhesus will be described. Compound 17 was suitable for QD dosing based on its predicted human half-life, and its projected human dose was much lower than that of the recently reported structurally-related benzyloxy compound 2. Compound 17 was selected as a tool compound candidate for NHP (Non-Human Primate) efficacy studies.


Assuntos
Acetamidas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Acetamidas/farmacocinética , Animais , Meia-Vida , Humanos , Pontos Quânticos , Ratos , Relação Estrutura-Atividade
11.
ACS Med Chem Lett ; 7(12): 1107-1111, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27994747

RESUMO

GPR142 has been identified as a potential glucose-stimulated insulin secretion (GSIS) target for the treatment of type 2 diabetes mellitus (T2DM). A class of triazole GPR142 agonists was discovered through a high throughput screen. The lead compound 4 suffered from poor metabolic stability and poor solubility. Lead optimization strategies to improve potency, efficacy, metabolic stability, and solubility are described. This optimization led to compound 20e, which showed significant reduction of glucose excursion in wild-type but not in GPR142 deficient mice in an oral glucose tolerance test (oGTT) study. These studies provide strong evidence that reduction of glucose excursion through treatment with 20e is GPR142-mediated, and GPR142 agonists could be used as a potential treatment for type 2 diabetes.

12.
Bioorg Med Chem Lett ; 26(6): 1529-1535, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26898814

RESUMO

MK-4256, a tetrahydro-ß-carboline sstr3 antagonist, was discontinued due to a cardiovascular (CV) adverse effect observed in dogs. Additional investigations revealed that the CV liability (QTc prolongation) was caused by the hERG off-target activity of MK-4256 and was not due to sstr3 antagonism. In this Letter, we describe our extensive SAR effort at the C3 position of the tetrahydro-ß-carboline structure. This effort resulted in identification of 5-fluoro-pyridin-2-yl as the optimal substituent on the imidazole ring to balance sstr3 activity and the hERG off-target liability.


Assuntos
Carbolinas/química , Carbolinas/farmacologia , Receptores de Somatostatina/antagonistas & inibidores , Animais , Carbolinas/síntese química , Cães , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
13.
ACS Med Chem Lett ; 6(8): 936-41, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26288697

RESUMO

We report herein the design and synthesis of a series of potent and selective GPR119 agonists. Our objective was to develop a GPR119 agonist with properties that were suitable for fixed-dose combination with a DPP4 inhibitor. Starting from a phenoxy analogue (1), medicinal chemistry efforts directed toward reducing half-life and increasing solubility led to the synthesis of a series of benzyloxy analogues. Compound 28 was chosen for further profiling because of its favorable physicochemical properties and excellent GPR119 potency across species. This compound exhibited a clean off-target profile in counterscreens and good in vivo efficacy in mouse oGTT.

14.
Bioorg Med Chem Lett ; 25(17): 3520-5, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26199120

RESUMO

We report SAR studies on a novel non-peptidic somatostatin receptor 3 (SSTR3) agonist lead series derived from (4-phenyl-1H-imidazol-2-yl)methanamine. This effort led to the discovery of a highly potent low molecular weight SSTR3 agonist 5c (EC50=5.2 nM, MW=359). The results from molecular overlays of 5c onto the L-129 structure indicate good alignment, and two main differences of the proposed overlays of the antagonist MK-4256 onto the conformation of 5c lead to inversion of antagonism to agonism.


Assuntos
Metilaminas/química , Receptores de Somatostatina/química , Descoberta de Drogas , Humanos , Relação Estrutura-Atividade
15.
ACS Med Chem Lett ; 6(5): 513-7, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26005524

RESUMO

The imidazolyl-tetrahydro-ß-carboline class of sstr3 antagonists have demonstrated efficacy in a murine model of glucose excursion and may have potential as a treatment for type 2 diabetes. The first candidate in this class caused unacceptable QTc interval prolongation in oral, telemetrized cardiovascular (CV) dogs. Herein, we describe our efforts to identify an acceptable candidate without CV effects. These efforts resulted in the identification of (1R,3R)-3-(4-(5-fluoropyridin-2-yl)-1H-imidazol-2-yl)-1-(1-ethyl-pyrazol-4-yl)-1-(3-methyl-1,3,4-oxadiazol-3H-2-one-5-yl)-2,3,4,9-tetrahydro-1H-ß-carboline (17e, MK-1421).

16.
ACS Med Chem Lett ; 5(10): 1082-7, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25349648

RESUMO

We report the discovery of a novel series of DGAT1 inhibitors in the benzimidazole class with a piperdinyl-oxy-cyclohexanecarboxylic acid moiety. This novel series possesses significantly improved selectivity against the A2A receptor, no ACAT1 off-target activity at 10 µM, and higher aqueous solubility and free fraction in plasma as compared to the previously reported pyridyl-oxy-cyclohexanecarboxylic acid series. In particular, 5B was shown to possess an excellent selectivity profile by screening it against a panel of more than 100 biological targets. Compound 5B significantly reduces lipid excursion in LTT in mouse and rat, demonstrates DGAT1 mediated reduction of food intake and body weight in mice, is negative in a 3-strain Ames test, and appears to distribute preferentially in the liver and the intestine in mice. We believe this lead series possesses significant potential to identify optimized compounds for clinical development.

17.
ACS Med Chem Lett ; 5(7): 748-53, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25050159

RESUMO

Antagonism of somatostatin subtype receptor 3 (sstr3) has emerged as a potential treatment of Type 2 diabetes. Unfortunately, the development of our first preclinical candidate, MK-4256, was discontinued due to a dose-dependent QTc (QT interval corrected for heart rate) prolongation observed in a conscious cardiovascular (CV) dog model. As the fate of the entire program rested on resolving this issue, it was imperative to determine whether the observed QTc prolongation was associated with hERG channel (the protein encoded by the human Ether-à-go-go-Related Gene) binding or was mechanism-based as a result of antagonizing sstr3. We investigated a structural series containing carboxylic acids to reduce the putative hERG off-target activity. A key tool compound, 3A, was identified from this SAR effort. As a potent sstr3 antagonist, 3A was shown to reduce glucose excursion in a mouse oGTT assay. Consistent with its minimal hERG activity from in vitro assays, 3A elicited little to no effect in an anesthetized, vagus-intact CV dog model at high plasma drug levels. These results afforded the critical conclusion that sstr3 antagonism is not responsible for the QTc effects and therefore cleared a path for the program to progress.

18.
ACS Med Chem Lett ; 5(6): 690-5, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24944745

RESUMO

A novel class of small-molecule, highly potent, and subtype-selective somatostatin SST3 agonists was discovered through modification of a SST3 antagonist. As an example, (1R,2S)-9 demonstrated not only potent in vitro SST3 agonist activity but also in vivo SST3 agonist activity in a mouse oral glucose tolerance test (OGTT). These agonists may be useful reagents for studying the physiological roles of the SST3 receptor and may potentially be useful as therapeutic agents.

19.
ACS Med Chem Lett ; 5(6): 717-21, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24944750

RESUMO

We report herein the identification of MK-4409, a potent and selective fatty acid amide hydrolase (FAAH) inhibitor. Starting from a high throughput screening (HTS) hit, medicinal chemistry efforts focused on optimizing of FAAH inhibition in vitro potency, improving the pharmacokinetic (PK) profile, and increasing in vivo efficacy in rodent inflammatory and neuropathic pain assays.

20.
ACS Med Chem Lett ; 4(6): 509-13, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24900701

RESUMO

We report herein the discovery of a fatty acid amide hydrolase (FAAH) positron emission tomography (PET) tracer. Starting from a pyrazole lead, medicinal chemistry efforts directed toward reducing lipophilicity led to the synthesis of a series of imidazole analogues. Compound 6 was chosen for further profiling due to its appropriate physical chemical properties and excellent FAAH inhibition potency across species. [(11)C]-6 (MK-3168) exhibited good brain uptake and FAAH-specific signal in rhesus monkeys and is a suitable PET tracer for imaging FAAH in the brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA