Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 143(8): 805-820, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225722

RESUMO

BACKGROUND: Elevated intracardiac pressure attributable to heart failure induces electrical and structural remodeling in the left atrium (LA) that begets atrial myopathy and arrhythmias. The underlying molecular pathways that drive atrial remodeling during cardiac pressure overload are poorly defined. The purpose of this study is to characterize the response of the ETV1 (ETS translocation variant 1) signaling axis in the LA during cardiac pressure overload in humans and mouse models and explore the role of ETV1 in atrial electrical and structural remodeling. METHODS: We performed gene expression profiling in 265 left atrial samples from patients who underwent cardiac surgery. Comparative gene expression profiling was performed between 2 murine models of cardiac pressure overload, transverse aortic constriction banding and angiotensin II infusion, and a genetic model of Etv1 cardiomyocyte-selective knockout (Etv1f/fMlc2aCre/+). RESULTS: Using the Cleveland Clinic biobank of human LA specimens, we found that ETV1 expression is decreased in patients with reduced ejection fraction. Consistent with its role as an important mediator of the NRG1 (Neuregulin 1) signaling pathway and activator of rapid conduction gene programming, we identified a direct correlation between ETV1 expression level and NRG1, ERBB4, SCN5A, and GJA5 levels in human LA samples. In a similar fashion to patients with heart failure, we showed that left atrial ETV1 expression is downregulated at the RNA and protein levels in murine pressure overload models. Comparative analysis of LA RNA sequencing datasets from transverse aortic constriction and angiotensin II-treated mice showed a high Pearson correlation, reflecting a highly ordered process by which the LA undergoes electrical and structural remodeling. Cardiac pressure overload produced a consistent downregulation of ErbB4, Etv1, Scn5a, and Gja5 and upregulation of profibrotic gene programming, which includes Tgfbr1/2, Igf1, and numerous collagen genes. Etv1f/fMlc2aCre/+ mice displayed atrial conduction disease and arrhythmias. Correspondingly, the LA from Etv1f/fMlc2aCre/+ mice showed downregulation of rapid conduction genes and upregulation of profibrotic gene programming, whereas analysis of a gain-of-function ETV1 RNA sequencing dataset from neonatal rat ventricular myocytes transduced with Etv1 showed reciprocal changes. CONCLUSIONS: ETV1 is downregulated in the LA during cardiac pressure overload, contributing to both electrical and structural remodeling.


Assuntos
Arritmias Cardíacas/patologia , Proteínas de Ligação a DNA/metabolismo , Átrios do Coração/metabolismo , Fatores de Transcrição/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Angiotensina II/administração & dosagem , Angiotensina II/efeitos adversos , Animais , Arritmias Cardíacas/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neuregulina-1/genética , Neuregulina-1/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Remodelação Ventricular , Adulto Jovem
2.
Circ Res ; 127(12): 1536-1548, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32962518

RESUMO

RATIONALE: FHFs (fibroblast growth factor homologous factors) are key regulators of sodium channel (NaV) inactivation. Mutations in these critical proteins have been implicated in human diseases including Brugada syndrome, idiopathic ventricular arrhythmias, and epileptic encephalopathy. The underlying ionic mechanisms by which reduced Nav availability in Fhf2 knockout (Fhf2KO) mice predisposes to abnormal excitability at the tissue level are not well defined. OBJECTIVE: Using animal models and theoretical multicellular linear strands, we examined how FHF2 orchestrates the interdependency of sodium, calcium, and gap junctional conductances to safeguard cardiac conduction. METHODS AND RESULTS: Fhf2KO mice were challenged by reducing calcium conductance (gCaV) using verapamil or by reducing gap junctional conductance (Gj) using carbenoxolone or by backcrossing into a cardiomyocyte-specific Cx43 (connexin 43) heterozygous background. All conditions produced conduction block in Fhf2KO mice, with Fhf2 wild-type (Fhf2WT) mice showing normal impulse propagation. To explore the ionic mechanisms of block in Fhf2KO hearts, multicellular linear strand models incorporating FHF2-deficient Nav inactivation properties were constructed and faithfully recapitulated conduction abnormalities seen in mutant hearts. The mechanisms of conduction block in mutant strands with reduced gCaV or diminished Gj are very different. Enhanced Nav inactivation due to FHF2 deficiency shifts dependence onto calcium current (ICa) to sustain electrotonic driving force, axial current flow, and action potential (AP) generation from cell-to-cell. In the setting of diminished Gj, slower charging time from upstream cells conspires with accelerated Nav inactivation in mutant strands to prevent sufficient downstream cell charging for AP propagation. CONCLUSIONS: FHF2-dependent effects on Nav inactivation ensure adequate sodium current (INa) reserve to safeguard against numerous threats to reliable cardiac impulse propagation.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/metabolismo , Fatores de Crescimento de Fibroblastos/deficiência , Frequência Cardíaca , Miócitos Cardíacos/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Simulação por Computador , Conexina 43/genética , Conexina 43/metabolismo , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/genética , Junções Comunicantes/metabolismo , Predisposição Genética para Doença , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Modelos Cardiovasculares , Fenótipo
3.
Purinergic Signal ; 16(3): 415-426, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32789792

RESUMO

Animal models of asthma have shown that limonene, a naturally occurring terpene in citrus fruits, can reduce inflammation and airway reactivity. However, the mechanism of these effects is unknown. We first performed computational and molecular docking analyses that showed limonene could bind to both A2A and A2B receptors. The pharmacological studies were carried out with A2A adenosine receptor knock-out (A2AKO) and wild-type (WT) mice using ovalbumin (OVA) to generate the asthma phenotype. We investigated the effects of limonene on lung inflammation and airway responsiveness to methacholine (MCh) and NECA (nonselective adenosine analog) by administering limonene as an inhalation prior to OVA aerosol challenges in one group of allergic mice for both WT and KO. In whole-body plethysmography studies, we observed that airway responsiveness to MCh in WT SEN group was significantly lowered upon limonene treatment but no effect was observed in A2AKO. Limonene also attenuated NECA-induced airway responsiveness in WT allergic mice with no effect being observed in A2AKO groups. Differential BAL analysis showed that limonene reduced levels of eosinophils in allergic WT mice but not in A2AKO. However, limonene reduced neutrophils in sensitized A2AKO mice, suggesting that it may activate A2B receptors as well. These data indicate that limonene-induced reduction in airway inflammation and airway reactivity occurs mainly via activation of A2AAR but A2B receptors may also play a supporting role.


Assuntos
Asma/tratamento farmacológico , Inflamação/tratamento farmacológico , Limoneno/farmacologia , Receptor A2A de Adenosina/metabolismo , Animais , Asma/induzido quimicamente , Asma/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Limoneno/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , Ovalbumina , Receptor A2A de Adenosina/genética
4.
Nat Med ; 26(9): 1452-1458, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661390

RESUMO

Disruption of systemic homeostasis by either chronic or acute stressors, such as obesity1 or surgery2, alters cancer pathogenesis. Patients with cancer, particularly those with breast cancer, can be at increased risk of cardiovascular disease due to treatment toxicity and changes in lifestyle behaviors3-5. While elevated risk and incidence of cardiovascular events in breast cancer is well established, whether such events impact cancer pathogenesis is not known. Here we show that myocardial infarction (MI) accelerates breast cancer outgrowth and cancer-specific mortality in mice and humans. In mouse models of breast cancer, MI epigenetically reprogrammed Ly6Chi monocytes in the bone marrow reservoir to an immunosuppressive phenotype that was maintained at the transcriptional level in monocytes in both the circulation and tumor. In parallel, MI increased circulating Ly6Chi monocyte levels and recruitment to tumors and depletion of these cells abrogated MI-induced tumor growth. Furthermore, patients with early-stage breast cancer who experienced cardiovascular events after cancer diagnosis had increased risk of recurrence and cancer-specific death. These preclinical and clinical results demonstrate that MI induces alterations in systemic homeostasis, triggering cross-disease communication that accelerates breast cancer.


Assuntos
Neoplasias da Mama/patologia , Monócitos/imunologia , Infarto do Miocárdio/patologia , Animais , Antígenos Ly/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/imunologia , Estudos Retrospectivos
5.
Immunopharmacol Immunotoxicol ; 41(2): 250-257, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30849257

RESUMO

Objective: ResolvinE1 (RvE1), an endogenous lipid mediator derived from omega 3 fatty acids contributes to resolution of allergic inflammatory responses. We investigated effects of RvE1 (R) and omega 3 fatty acids (O) on airway reactivity and inflammation using allergic mice. Methods: Mice were divided into control (nonasthmatic; CON) and allergen sensitized-challenged (asthmatic; SEN) groups, and were sensitized i.p. on days 1, 6 with 0.2 µg ovalbumin (OVA) followed by 5% OVA aerosol challenges on days 11-13. RvE1 was administered i.p. postallergen challenge, while omega 3 fatty acids (fish oil) were administered via oral gavage once daily (days 1-13). Whole body plethysmography and bronchoalveolar lavage (BAL) studies were performed on day 14. Results: RvE1 attenuated airway responsiveness to methacholine (48 mg/ml) in treated asthmatic mice vs. nontreated (150 ± 27.88% in SEN vs. 54 ± 7.52% in SEN + R, p < .05). No difference was observed with omega-3 supplementation (115 ± 19.28% in SEN + O) or treatment with both RvE1 and omega 3 fatty acids (39 ± 12.37% in SEN + R + O vs. 54 ± 7.52% in SEN + R). Differential BAL cell analysis showed that RvE1 decreased eosinophils and neutrophils in SEN mice (p < .005) while no difference was observed with omega-3 fatty acids. SEN + R + O group had similar results as RvE1 treated mice, suggesting that only RvE1 attenuated inflammation. Conclusions: RvE1 attenuated airway responsiveness and inflammation in asthmatic mice. Omega-3 fatty acids, although a precursor for RvE1 formation, had no additive effects on RvE1 decreases in airway inflammation and airway reactivity. Our data suggests that omega-3 supplementation has little effect on airway inflammation and reactivity in our model of asthma.


Assuntos
Asma , Suplementos Nutricionais , Ácido Eicosapentaenoico/análogos & derivados , Óleos de Peixe/farmacologia , Animais , Asma/dietoterapia , Asma/imunologia , Asma/patologia , Lavagem Broncoalveolar , Modelos Animais de Doenças , Ácido Eicosapentaenoico/imunologia , Eosinófilos/imunologia , Eosinófilos/patologia , Inflamação/dietoterapia , Inflamação/imunologia , Inflamação/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA