Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chem Sci ; 14(10): 2518-2527, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36908944

RESUMO

Fatty acids are an abundant class of lipids that are characterised by wide structural variation including isomeric diversity arising from the position and configuration of functional groups. Traditional approaches to fatty acid characterisation have combined chromatography and mass spectrometry for a description of the composition of individual fatty acids while infrared (IR) spectroscopy has provided insights into the functional groups and bond configurations at the bulk level. Here we exploit universal 3-pyridylcarbinol ester derivatization of fatty acids to acquire IR spectra of individual lipids as mass-selected gas-phase ions. Intramolecular interactions between the protonated pyridine moiety and carbon-carbon double bonds present highly sensitive probes for regiochemistry and configuration through promotion of strong and predictable shifts in IR resonances. Gas-phase IR spectra obtained from unsaturated fatty acids are shown to discriminate between isomers and enable the first unambiguous structural assignment of 6Z-octadecenoic acid in human-derived cell lines. Compatibility of 3-pyridylcarbinol ester derivatization with conventional chromatography-mass spectrometry and now gas-phase IR spectroscopy paves the way for comprehensive structure elucidation of fatty acids that is sensitive to regio- and stereochemical variations and with the potential to uncover new pathways in lipid metabolism.

2.
Anal Chem ; 94(46): 16180-16188, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36342869

RESUMO

Separation and identification of fatty acid (FA) isomers in biological samples represents a challenging problem for lipid chemists. Notably, FA regio- and stereo-isomers differing in the location or (cis/trans) geometry of carbon-carbon double bonds are often incompletely separated and ambiguously assigned in conventional chromatography-mass spectrometry analyses. To address this challenge, FAs have been derivatized with the charge-switch derivatization reagents N-methyl-pyridinium-3-methanamine and N-(4-aminomethylphenyl)pyridinium and subjected to reversed-phase liquid chromatography-tandem mass spectrometry. Charge-remote fragmentation of the fixed-charge derivatives leads to characteristic product ions arising from dissociation at allylic positions that enable assignment of position(s) of unsaturation, while a newly discovered dihydrogen neutral loss was found to be dominant for double bonds with cis-stereochemistry. The structure of the [M - 2]+ product ions was probed by gas-phase ozonolysis revealing the presence of two new carbon-carbon bonds on either side of the initial position of unsaturation consistent with an electrocyclic mechanism of 1,4-dihydrogen elimination. Charge-remote fragmentation pathways diagnostic of double bond position and stereochemistry were found to be generalized for FAs of different carbon-chain lengths, double bond positions, and degrees of unsaturation and were effective in the unequivocal assignment of the FA structure in complex mixtures of FA isomers, including bovine milk powder.


Assuntos
Carbono , Ácidos Graxos Insaturados , Ácidos Graxos Insaturados/química , Ácidos Graxos/análise , Espectrometria de Massas/métodos , Íons/química
3.
Cell Rep ; 34(6): 108738, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567271

RESUMO

Canonical fatty acid metabolism describes specific enzyme-substrate interactions that result in products with well-defined chain lengths, degree(s), and positions of unsaturation. Deep profiling of lipids across a range of prostate cancer cell lines reveals a variety of fatty acids with unusual site(s) of unsaturation that are not described by canonical pathways. The structure and abundance of these unusual lipids correlate with changes in desaturase expression and are strong indicators of cellular phenotype. Gene silencing and stable isotope tracing demonstrate that direct Δ6 and Δ8 desaturation of 14:0 (myristic), 16:0 (palmitic), and 18:0 (stearic) acids by FADS2 generate new families of unsaturated fatty acids (including n-8, n-10, and n-12) that have rarely-if ever-been reported in human-derived cells. Isomer-resolved lipidomics reveals the selective incorporation of these unusual fatty acids into complex structural lipids and identifies their presence in cancer tissues, indicating functional roles in membrane structure and signaling.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/biossíntese , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/enzimologia , Transdução de Sinais , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/genética , Inativação Gênica , Humanos , Masculino , Proteínas de Neoplasias/genética , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
4.
Analyst ; 146(1): 156-169, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33125008

RESUMO

Ultraviolet-photodissociation (UVPD) mass spectrometry is an emerging analytical tool for structural elucidation of biomolecules including lipids. Gas phase UVPD of ionised fatty acids (FAs) can promote fragmentation that is diagnostic for molecular structure including the regiochemistry of carbon-carbon double bonds and methyl branching position(s). Typically, however, lipids exhibit poor conversion to photoproducts under UVPD and thus require longer integration times to achieve the signal-to-noise required for structural assignments. Consequently, the integration of UVPD into liquid-chromatography mass spectrometry (LC-MS) workflows for FAs has been limited. To enhance photofragmentation efficiency, an alternative strategy has been devised using wet-chemical derivatization of FAs to explicitly incorporate photolabile groups. FA derivatives that include an aryl-iodide motif have photodissociation conversions of up to 28% when activated by a single 266 nm photon. The radical-directed dissociation product ions resulting from UVPD of these derivatives provide key details of molecular structure and discriminate between lipid isomers. Herein, we describe the structure-activity guided development of new FA derivatives capable of photoproduct yields of up to 97%. UVPD-action spectroscopy demonstrates that photodissociation for FAs derivatized with N-(2-aminoethyl)-4-iodobenzamide (NIBA) is maximised near 266 nm and highlights the key role of the 4-iodobenzamide motif in the efficient formation of [M - I]˙+ radical cations (and diagnostic secondary product ions). The high photodissociation yield of NIBA-derivatized lipids is maintained across 37 commonly observed FAs with the resulting UVPD mass spectra shown to be effective in the discrimination of isomeric FAs that differ in the position(s) of carbon-carbon double bonds. Integration of this strategy with reversed-phase LC-MS workflows is confirmed with high-quality UVPD mass spectra acquired across each chromatographic peak.


Assuntos
Ácidos Graxos , Raios Ultravioleta , Cromatografia Líquida , Indicadores e Reagentes , Íons , Espectrometria de Massas
5.
Rapid Commun Mass Spectrom ; 34(9): e8741, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32012356

RESUMO

RATIONALE: Eicosanoids are short-lived bio-responsive lipids produced locally from oxidation of polyunsaturated fatty acids (FAs) via a cascade of enzymatic or free radical reactions. Alterations in the composition and concentration of eicosanoids are indicative of inflammation responses and there is strong interest in developing analytical methods for the sensitive and selective detection of these lipids in biological mixtures. Most eicosanoids are hydroxy FAs (HFAs), which present a particular analytical challenge due to the presence of regioisomers arising from differing locations of hydroxylation and unsaturation within their structures. METHODS: In this study, the recently developed derivatization reagent 1-(3-(aminomethyl)-4-iodophenyl)pyridin-1-ium (4-I-AMPP+ ) was applied to a representative set of HFAs including bioactive eicosanoids. Photodissociation (PD) mass spectra obtained at 266 nm of 4-I-AMPP+ -modified HFAs exhibit abundant product ions arising from photolysis of the aryl-iodide bond within the derivative with subsequent migration of the radical to the hydroxyl group promoting fragmentation of the FA chain and facilitating structural assignment. RESULTS: Representative polyunsaturated HFAs (from the hydroxyeicosatetraenoic acid and hydroxyeicosapentaenoic acid families) were derivatized with 4-I-AMPP+ and subjected to a reversed-phase liquid chromatography workflow that afforded chromatographic resolution of isomers in conjunction with structurally diagnostic PD mass spectra. CONCLUSIONS: PD of these complex HFAs was found to be sensitive to the locations of hydroxyl groups and carbon-carbon double bonds, which are structural properties strongly associated with the biosynthetic origins of these lipid mediators.

6.
Anal Chem ; 91(15): 9901-9909, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31298837

RESUMO

Fatty acids are a structurally diverse category of lipids with a myriad of biochemical functions, which includes their role as building blocks of more complex lipids (e.g., glycerophospholipids and triacylglycerols). Increasingly, the analysis of fatty acids is undertaken using liquid chromatography-mass spectrometry (LC-MS), due to its versatility in the detection of lipids across a wide range of concentrations and diversity of molecular structures and masses. Previous work has shown that fixed-charge pyridinium derivatives are effective in enhancing the detection of fatty acids in LC-MS workflows. Herein, we describe the development of two novel pyridinium fixed-charged derivatization reagents that incorporate a photolabile aryl iodide that is selectively activated by laser irradiation inside the mass spectrometer. Photodissociation mass spectra of fatty acids conjugated to 1-(3-(aminomethyl)-4-iodophenyl)pyridin-1-ium (4-I-AMPP+) and 1-(4-(aminomethyl)-3-iodophenyl)pyridin-1-ium (3-I-AMPP+) derivatives reveal structurally diagnostic product ions. These spectra feature radical-directed dissociation of the carbon-carbon bonds within the fatty acyl chain, enabling structural assignments of fatty acids and discrimination of isomers that differ in site(s) of unsaturation, methyl branching or cyclopropanation. These derivatives are shown to be suitable for hyphenated LC-MS methods, and their predictable photodissociation behavior allows de novo identification of unusual fatty acids within a biological context.


Assuntos
Ácidos Graxos/química , Processos Fotoquímicos , Cromatografia Líquida , Iodo/química , Espectrometria de Massas , Compostos de Piridínio/química
7.
J Am Soc Mass Spectrom ; 30(10): 2135-2143, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31347025

RESUMO

The specific positions of carbon-carbon double bond(s) within an unsaturated fatty acid exert a significant effect on the physical and chemical properties of the lipid that ultimately inform its biological function(s). Contemporary liquid chromatography-mass spectrometry (MS) strategies based on electrospray ionization coupled to tandem MS can easily detect fatty acyl lipids but generally cannot reveal those specific site(s) of unsaturation. Herein, we describe a novel and versatile workflow whereby fatty acids are first converted to fixed charge N-(4-aminomethylphenyl)pyridinium (AMPP) derivatives and subsequently subjected to ozone-induced dissociation (OzID) on a modified triple quadrupole mass spectrometer. The AMPP modification enhances the detection of fatty acids introduced by direct infusion. Fragmentation of the derivatized fatty acids also provides diagnostic fragment ions upon collision-induced dissociation that can be targeted in precursor ion scans to subsequently trigger OzID analyses in an automated data-dependent workflow. It is these OzID analyses that provide unambiguous assignment of carbon-carbon double bond locations in the AMPP-derivatized fatty acids. The performance of this analysis pipeline is assessed in profiling the patterns of unsaturation in fatty acids within the complex biological secretion vernix caseosa. This analysis uncovers significant isomeric diversity within the fatty acid pool of this sample, including a number of hitherto unreported double bond positional isomers that hint at the activity of potentially new metabolic pathways.


Assuntos
Ácidos Graxos/análise , Ácidos Graxos/química , Ozônio/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Triglicerídeos/análise , Triglicerídeos/química , Verniz Caseoso/química
8.
J Lipid Res ; 59(8): 1510-1518, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29907595

RESUMO

The (O-acyl)-ω-hydroxy FAs (OAHFAs) comprise an unusual lipid subclass present in the skin, vernix caseosa, and meibomian gland secretions. Although they are structurally related to the general class of FA esters of hydroxy FAs (FAHFAs), the ultra-long chain (30-34 carbons) and the putative ω-substitution of the backbone hydroxy FA suggest that OAHFAs have unique biochemistry. Complete structural elucidation of OAHFAs has been challenging because of their low abundance within complex lipid matrices. Furthermore, because these compounds occur as a mixture of closely related isomers, insufficient spectroscopic data have been obtained to guide structure confirmation by total synthesis. Here, we describe the full molecular structure of ultra-long chain OAHFAs extracted from human meibum by exploiting the gas-phase purification of lipids through multi-stage MS and novel multidimensional ion activation methods. The analysis elucidated sites of unsaturation, the stereochemical configuration of carbon-carbon double bonds, and ester linkage regiochemistry. Such isomer-resolved MS guided the first total synthesis of an ultra-long chain OAHFA, which, in turn, confirmed the structure of the most abundant OAHFA found in human meibum, OAHFA 50:2. The availability of a synthetic OAHFA opens new territory for future investigations into the unique biophysical and biochemical properties of these lipids.


Assuntos
Ácidos Graxos/química , Ácidos Graxos/síntese química , Espectrometria de Massas , Técnicas de Química Sintética , Ésteres/química , Humanos , Glândulas Tarsais/química , Estereoisomerismo
9.
J Am Soc Mass Spectrom ; 29(9): 1848-1860, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29869328

RESUMO

In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA