Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 113(6): 3635-3643, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450292

RESUMO

The 16S rRNA gene amplicon sequencing is a popular technique that provides accurate characterization of microbial taxonomic abundances but does not provide any functional information. Several tools are available to predict functional profiles based on 16S rRNA gene sequence data that use different genome databases and approaches. As variable regions of partially-sequenced 16S rRNA gene cannot resolve taxonomy accurately beyond the genus level, these tools may give inflated results. Here, we developed 'MicFunPred', which uses a novel approach to derive imputed metagenomes based on a set of core genes only, thereby minimizing false-positive predictions. On simulated datasets, MicFunPred showed the lowest False Positive Rate (FPR) with mean Spearman's correlation of 0.89 (SD = 0.03), while on seven real datasets the mean correlation was 0.75 (SD = 0.08). MicFunPred was found to be faster with low computational requirements and performed better or comparable when compared with other tools.


Assuntos
Bactérias , Metagenoma , Bactérias/genética , Genes de RNAr , Filogenia , RNA Ribossômico 16S/genética
2.
Curr Microbiol ; 78(7): 2577-2588, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33983483

RESUMO

For decades, bacterial natural products have served as valuable resources for developing novel drugs to treat several human diseases. Recent advancements in the integrative approach of using genomic and functional tools have proved beneficial in obtaining a comprehensive understanding of these biomolecules. This study presents an in-depth characterization of the anti-diabetic activity exhibited by a bacterial isolate SW1, isolated from an effluent treatment plant. As a primary screening, we assessed the isolate for its potential to inhibit alpha-amylase and alpha-glucosidase enzymes. Upon confirmation, we further utilized LC-MS, ESI-MS/MS, and NMR spectroscopy to identify and characterize the biomolecule. These efforts were coupled with the genomic assessment of the biosynthetic gene cluster involved in the anti-diabetic compound production. Our investigation discovered that the isolate SW1 inhibited both α-amylase and α-glucosidase activity. The chemical analysis suggested the production of acarbose, an anti-diabetic biomolecule, which was further confirmed by the presence of biosynthetic gene cluster "acb" in the genome. Our in-depth chemical characterization and genome mining approach revealed the potential of bacteria from an unconventional niche, an effluent treatment plant. To the best of our knowledge, it is one of the first few reports of acarbose production from the genus Arthrobacter.


Assuntos
Arthrobacter , Acarbose , Arthrobacter/genética , Genômica , Inibidores de Glicosídeo Hidrolases , Humanos , Espectrometria de Massas em Tandem , alfa-Glucosidases/genética
3.
J Biosci ; 44(5)2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31719223

RESUMO

Microbial community structure of crude petroleum oil (CP)- and refined petroleum oil (RP)-contaminated soil was investigated. The taxonomical and functional diversity of such soils can be a great source of information about microbial community and genes involved in petroleum hydrocarbon (PHC) degradation. In this study, microbial diversity of soils contaminated by RP from urban biome of Pune, India, and CP from agricultural biome of Gujarat, India, were assessed by 16S rRNA amplicon sequencing on Illumina MiSeq platform. Association between the soil microbial community and the physicochemical parameters were investigated for their potential role. In RP- and CP-contaminated soils, the microbiome analysis showed Proteobacteria as most dominant phylum followed by Actinobacteria. Interestingly, Firmicutes were most prevailing in a CP-contaminated sample while they were least prevailing in RP-contaminated soils. Soil moisture content, total organic carbon and organic nitrogen content influenced the taxa diversity in these soils. Species richness was more in RP as compared to CP soils. Further prediction of metagenome using PICRUSt revealed that the RP and CP soils contain microbial communities with excellent metabolic potential for PHC degradation. Microbial community contributing to genes essential for soil health improvement and plant growth promotion was also gauged. Our analysis showed promising results for future bioaugmentation assisted phytoremediation (BAP) strategies for treating such soils.


Assuntos
Poluição Ambiental , Hidrocarbonetos/metabolismo , Metagenoma , Microbiota , Petróleo/metabolismo , Desenvolvimento Vegetal , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , RNA Ribossômico 16S/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA