Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS One ; 19(4): e0301911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593166

RESUMO

Numerous pre-clinical and observational studies have explored the potential effects of fluoride (F) at varying concentrations on diverse systems and organs. While some have assessed the endocrinological conditions of children and adults, a consensus regarding the interaction between F and the thyroid remains elusive. This systematic review aimed to gather primary evidence on the association between F and changes in the thyroid at optimal and high levels in water supply as stipulated by the World Health Organization. A search strategy, incorporating terms pertinent to the studies, was employed across PubMed, Scopus, Web of Science, Lilacs, and Google Scholar. Following the review of studies, data were extracted and analyzed using the Grading of Recommendations, Assessment, Development, and Evaluations to assess the quality of the evidence. Our results yielded 3,568 studies, of which seven met the inclusion criteria for this review. Five of the seven studies identified an association between high F exposure and thyroid function. In the analysis of methodological quality, every study was found to have major or minor methodological issues and significant risk of bias. The overall confidence in the evidence was deemed low for all outcomes in the seven studies. The evidence compiled in this review suggests a potential association between chronic high levels of F exposure and thyroid damage. Nonetheless, further studies with robust design and high methodological quality are required to provide evidence for policy makers and health care practitioners.


Assuntos
Fluoretos , Glândula Tireoide , Criança , Adulto , Humanos , Fluoretos/efeitos adversos
2.
Front Public Health ; 11: 1183308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457266

RESUMO

Although there are many studies on the health effects of methylmercury (MeHg) toxicity during in utero and early development, little is known about its effects on mineralized tissues present in the oral cavity, such as enamel structure. Therefore, this study evaluated the effects of MeHg exposure on the physico-chemical, ultrastructural and functional properties of mature tooth enamel. Specifically, we studied offspring of mothers exposed to MeHg during the prenatal and postnatal periods which are the developmental stages associated with tooth enamel formation. Female rats were exposed to MeHg at a dose of 40 µg/kg/day for 42 days of pregnancy and lactation. The enamel of offspring was analyzed by (1) Fourier Transform Infrared Spectroscopy and Raman to assess physicochemical composition, (2) Scanning Electron Microscopy for ultrastructural evaluation, (3) Transmitted Polarizing Light Microscopy for analysis of the enamel extracellular matrix, and (4) resistance and hardness were evaluated by microhardness. The results showed that MeHg exposure during this sensitive enamel formation period induced changes in inorganic and organic content and enamel prisms ultrastructure alterations and disturbed the organic extracellular matrix due to a decreased enamel strength. These novel findings establish for the first time that maternal exposure to MeHg pre and postnatal promoted relevant changes in mature enamel of their offspring rats.


Assuntos
Compostos de Metilmercúrio , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Ratos , Animais , Feminino , Compostos de Metilmercúrio/toxicidade , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Saúde Bucal , Lactação
3.
Front Aging Neurosci ; 15: 1149143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205057

RESUMO

Objective: The aim of this study was to identify and characterize the 100 most cited articles on Parkinson's disease (PD) and phenolic compounds (PCs). Methods: Articles were selected in the Web of Science Core Collection up to June 2022 based on predetermined inclusion criteria, and the following bibliometric parameters were extracted: the number of citations, title, keywords, authors, year, study design, tested PC and therapeutic target. MapChart was used to create worldwide networks, and VOSviewer software was used to create bibliometric networks. Descriptive statistical analysis was used to identify the most researched PCs and therapeutic targets in PD. Results: The most cited article was also the oldest. The most recent article was published in 2020. Asia and China were the continent and the country with the most articles in the list (55 and 29%, respectively). In vitro studies were the most common experimental designs among the 100 most cited articles (46%). The most evaluated PC was epigallocatechin. Oxidative stress was the most studied therapeutic target. Conclusion: Despite the demonstrations in laboratorial studies, the results obtained point to the need for clinical studies to better elucidate this association.

4.
Antioxidants (Basel) ; 12(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36829890

RESUMO

This study aimed to analyze the research trends on salivary oxidative stress associated with dental caries and to perform bibliometric approaches for existing publications on this association. A search was performed using the Web of Science Core Collection, without any restriction of language or publication year. The number of periodicals with the most published articles in this theme, most published authors and keywords were mapped; other metrics were also evaluated such as the countries that have more research on the subject and the period in which there were more publications on the subject. During the knowledge mapping, the most frequent experimental designs were analyzed, type of saliva collection, stage of caries disease, evaluated oxidative parameters were retrieved and analyzed from each manuscript. Between the 43 selected articles, the Journal of Clinical Pediatric Dentistry was the periodical appearing the most with 4 published articles. The authors who published the most were Celec, P., Tothova, L., Hegde, A.M., Shetty, S., Antoniali, C., and Pessan, JP with three articles each, and a total of 180 keywords representing the evolution of the theme. India and Asia were found to be the country and continent with most publications, respectively. Most articles collected non-stimulated total saliva, with total antioxidant capacity being the parameter most often evaluated. The type of study that appeared the most was cross-sectional studies, and articles published in the period of 2017-2022 were the most frequent. Studies show that dental caries can be associated to the changes in salivary oxidative biochemistry with an increase in lipid peroxidation, a biomarker of oxidative damage, and an increase in antioxidant capacity in chronic caries, in response to cariogenic challenge. Some studies evidence the reduction of lipid peroxidation after treatment of the carious lesion. Our findings reveal worldwide research trends, as well as a clearer knowledge of the evolution and future scenarios of this issue, also showing the mechanisms associating dental caries with changes in salivary oxidative biochemical parameters are not clear.

5.
Life (Basel) ; 12(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36431074

RESUMO

This review article mapped and analyzed the most cited articles on the association of photobiomodulation (PBM) with oral mucositis (OM) and the evolution of clinical protocols in the area. A comprehensive search was performed on the Web of Science Core Collection (WoS-CC) database, leading to the extraction of information such as title, authors, abstract, journal name, number, average of citations, study design, year of publication, institutions, continents, countries, type of laser used, irradiated anatomical points, primary anti-cancer therapy, and laser parameters. Among those, clinical trials and literature reviews were the most common study designs. The main type of laser used was the InGaAlP diode, with a wavelength ranging from 630-660 nm, power going in 40-100 mW, and energy density ranging from 0.375-22 J/cm2. As for the anatomical sites irradiated by PBM, the cheek mucosa, upper and lower lips, lateral tongue, and bottom of the mouth stood out. This analysis highlights an increasing interest in PBM as a supportive treatment in cases of OM, as well as the evolution of the technique, types of laser devices, and protocols used.

6.
Toxics ; 10(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36136496

RESUMO

Mercury is a ubiquitous pollutant in the environment with potential neurotoxic effects. Several populations are susceptible to mercurial exposure, especially methylmercury (MeHg) at low doses for long periods through food consumption. Given this, the present work aimed to assess the effects of long-term MeHg exposure on the cerebellum of rats from a translational perspective using a representative dose, assessing molecular, biochemical, morphological, and behavioral parameters. The model was produced by administering 40 µg/kg of MeHg for 60 days to adult male Wistar rats by oral gavage. As a result of this exposure, the animals presented motor deficits in open field and rotarod tests which were associated with an increase in total mercury content in cerebellar parenchyma, a reduction in antioxidant competence against peroxyl radicals, and increased nitrite and lipid peroxidation levels. The proteomic approach showed 317 modulated proteins. Such findings were associated with reductions in mature neuron and Purkinje cell densities and glial fibrillary acidic protein immunostained areas and increased microglial density. In addition, decreases in myelin basic protein and synaptophysin immunostaining were also observed. The results thus provided new evidence of the mechanisms underlying complex MeHg-induced neurodegeneration, especially the proteins underlying the biochemical and morphological features associated with motor dysfunction.

7.
Chemosphere ; 308(Pt 3): 136453, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122745

RESUMO

Methylmercury (MeHg) is the most common organic form of mercury (Hg) that humans are exposed and is considered an environmental pollutant. Several populations that live in endemic regions of MeHg exposure are subject to the toxicant for long periods, including pregnant women and children, causing damage to several organs during early periods of development. Alveolar bone is an essential structure for the oral cavity, responsible for supporting teeth and masticatory forces. However, evidence on the effects of MeHg on alveolar bone and the intrauterine and lactation period is lacking. Thus, this study aimed to investigate the effects of MeHg exposure during gestation and lactation on the developing alveolar bone of offspring rats after maternal exposure. Dams were exposed during 41 days of pregnancy and lactation, and the mandibles of the offspring were collected. The alveolar bone was analyzed by Fourier Transform Infrared Spectroscopy to evaluate the physicochemical composition; by Scanning Electron Microscopy for ultrastructural evaluation; by histopathological, histochemical, and morphometric for tissue analyses. In addition, bone quality was assessed by X-ray microtomography. MeHg exposure altered the mineral composition and caused histological damage associated with a lower quantity and thickness of bone trabeculae, as well as reduced osteocyte density and collagen fiber content. A reduction in trabecular thickness and bone volume and an increase in trabecular spaces were observed and were associated with anatomical compromise of the vertical bone dimensions. Thus, the results suggest that the developing alveolar bone is susceptible to the toxic effects of MeHg when organisms are exposed during intrauterine and lactation periods. From a translational perspective, these changes in the alveolar bone can help us understand possible abnormalities induced by toxic metals and highlight the need for care for structures other than those already seen as targets for damage triggered by environmental MeHg exposure.


Assuntos
Poluentes Ambientais , Mercúrio , Compostos de Metilmercúrio , Animais , Criança , Colágeno , Feminino , Humanos , Lactação , Compostos de Metilmercúrio/toxicidade , Gravidez , Ratos
8.
Front Pharmacol ; 13: 973118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147324

RESUMO

This study aimed to analyze the landscape of maternal methylmercury exposure and its offspring consequences based on knowledge mapping of the 100 most-cited papers about this theme. A search was performed using the Web of Science, without any restriction of language or publication year. Data bibliometrics, such as the number of citations, citation density, corresponding author's country, year of publication, study design, and keywords, were extracted from each paper and analyzed. VOSviewer software was used to create graphical bibliometric maps. Of a total of 1,776 studies on this theme, the 100 most-cited papers rendered the number of citations ranged from 110 to 1,356 citations. The non-systematic reviews and cohort studies from Anglo-Saxon countries published in the first decade of the 2000s were the most frequent. Clarkson, Grandjean, and Myers were the authors with higher citation density. A total of 520 keywords represented the evolution of the theme, from classic episodes of MeHg intoxication, as well as main the health changes until the different forms of exposure and, in recent years, biomonitoring studies were highlighted. Our findings provide the global research trends highlighting the network of most influential authors and a better understanding of the evolution and future scenarios of this theme.

9.
Toxicol Rep ; 9: 563-574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392159

RESUMO

The environmental contamination by methylmercury (MeHg) is a major concern for public health. The effects of MeHg in the central nervous system (CNS) of adult animals have been extensively investigated; however, little is known about the effects of MeHg exposure during intrauterine and lactation periods on motor and cognitive functions of adolescent rats. Therefore, this study aimed to investigate the effect of MeHg exposure during intrauterine life and lactation on both motor and cognitive functions of offspring rats. Ten female Wistar rats were exposed to 40 µg/kg/day of MeHg through cookie treats from the first day of pregnancy until the last day of breastfeeding. Both motor and cognitive functions of offspring male rats were assessed by open field, rotarod, and step-down inhibitory avoidance tests. Forty-one days after birth, the hippocampus and cerebellum were collected to determine total Hg content, antioxidant capacity against peroxyl radicals (ACAP), reduced glutathione (GSH) levels, lipid peroxidation (LPO), and nitrite levels. MeHg exposure during CNS development increased Hg levels in both hippocampal and cerebellar parenchymas, triggered oxidative stress throughout ACAP and GSH decrease, increased LPO and nitrite levels. These alterations resulted in reduced spontaneous and stimulated locomotion and short- and long-term memory deficits. Therefore, damages triggered by MeHg exposure during intrauterine life and lactation had detrimental effects on oxidative biochemistry and motor and cognitive functions of offspring rats.

10.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409136

RESUMO

Methylmercury (MeHg) is one of the most dangerous toxic pollutants spread throughout the earth. Chronic MeHg intoxication by contaminated food ingestion is the most common threat to human health, including impairment to the developing fetus. The present study aims at investigating the effects of maternal exposure to MeHg during gestation and lactation on the spinal cord of offspring. Pregnant rats received oral doses of MeHg (40 µg/kg/day) over a period of 42 days (21 gestation and 21 lactation). Control animals received the vehicle only. Total mercury concentration was measured in blood samples from offspring collected at the 41st postnatal day. Counting of motor neurons and immunoreactivity for myelin basic protein (MBP) were assessed in the spinal cords in both control and MeHg-intoxicated animals. Our results showed that MeHg promoted an increase in blood Hg levels. In addition, it caused a reduction in the number of spinal cord motor neurons as well as decreased MBP immunoreactivity in the cervical, thoracic and lumbar segments. Our present findings suggest that MeHg intoxication during rat pregnancy and lactation is associated with a pattern of motor neuron degeneration and downregulation of myelin basic protein in different segments of a developing spinal cord. Further studies are needed to establish the effect of MeHg intoxication in both young and adult rats.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Regulação para Baixo , Feminino , Humanos , Exposição Materna/efeitos adversos , Mercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Proteína Básica da Mielina/metabolismo , Gravidez , Ratos , Medula Espinal/metabolismo
11.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328600

RESUMO

Stroke is one of the leading causes of death and long-term disabilities worldwide, resulting in a debilitating condition occasioned by disturbances in the cerebral vasculature. Primary damage due to metabolic collapse is a quick outcome following stroke, but a multitude of secondary events, including excitotoxicity, inflammatory response, and oxidative stress cause further cell death and functional impairment. In the present work, we investigated whether a primary ischemic damage into the dorsal striatum may cause secondary damage in the circumjacent corpus callosum (CC). Animals were injected with endothelin-1 and perfused at 3, 7, 14, and 30 post-lesion days (PLD). Sections were stained with Cresyl violet for basic histopathology and immunolabeled by antibodies against astrocytes (anti-GFAP), macrophages/microglia (anti-IBA1/anti MHC-II), oligodendrocytes (anti-TAU) and myelin (anti-MBP), and Anti-Nogo. There were conspicuous microgliosis and astrocytosis in the CC, followed by later oligodendrocyte death and myelin impairment. Our results suggest that secondary white matter damage in the CC follows a primary focal striatal ischemia in adult rats.


Assuntos
Acidente Vascular Cerebral , Substância Branca , Animais , Corpo Caloso/patologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Ratos , Acidente Vascular Cerebral/metabolismo
12.
Oxid Med Cell Longev ; 2021: 5595047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659634

RESUMO

Lead (Pb) is a toxic metal with great neurotoxic potential. The aim of this study was to investigate the effects of a long-term Pb intoxication on the global proteomic profile, oxidative biochemistry and neuronal density in motor cortex of adult rats, and the possible outcomes related to motor functions. For this, Wistar rats received for 55 days a dose of 50 mg/Kg of Pb acetate by intragastric gavage. Then, the motor abilities were evaluated by open field and inclined plane tests. To investigate the possible oxidative biochemistry modulation, the levels of pro-oxidant parameters as lipid peroxidation and nitrites were evaluated. The global proteomic profile was evaluated by ultraefficiency liquid chromatography system coupled with mass spectrometry (UPLC/MS) followed by bioinformatic analysis. Moreover, it was evaluated the mature neuron density by anti-NeuN immunostaining. The statistical analysis was performed through Student's t-test, considering p < 0.05. We observed oxidative stress triggering by the increase in malonaldehyde and nitrite levels in motor cortex. In the proteomic analysis, the motor cortex presented alterations in proteins associated with neural functioning, morphological organization, and neurodegenerative features. In addition, it was observed a decrease in the number of mature neurons. These findings, associated with previous evidences observed in spinal cord, cerebellum, and hippocampus under the same Pb administration protocol, corroborate with the motor deficits in the rats towards Pb. Thus, we conclude that the long-term administration to Pb in young Wistar rats triggers impairments at several organizational levels, such as biochemical and morphological, which resulted in poor motor performance.


Assuntos
Chumbo/efeitos adversos , Córtex Motor/patologia , Doenças Neurodegenerativas/induzido quimicamente , Animais , Masculino , Estresse Oxidativo , Proteoma/metabolismo , Ratos , Ratos Wistar
13.
J Trace Elem Med Biol ; 68: 126820, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34293649

RESUMO

BACKGROUND: Methylmercury (MeHg) is still considered a global pollutant of major concern; thus, it becomes relevant to investigate and validate alternative diagnostic methods to track early-life human exposure. This study aimed to evaluate the salivary parameters and to characterize potential mechanisms of oxidative damage on the salivary glands (SG) of offspring rats after pre- and postnatal environmental-experimental MeHg exposure. METHODS: Pregnant Wistar rats were daily exposed to 40 µg/kg MeHg during both gestational and lactation periods. Then, the saliva of offspring rats was analyzed in terms of flow rate, amylase activity, and total protein concentration. The SG of the offspring rats were dissected to perform the oxidative biochemistry analyses of antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (LPO), and nitrite levels. RESULTS: Exposure to MeHg significantly decreased the ACAP, increased LPO and nitrite levels, decreased salivary flow rate, amylase activity, and total protein concentration. CONCLUSION: Saliva analyses can predict damages induced by early-life MeHg exposure and may be used as an auxiliary diagnostic method.


Assuntos
Compostos de Metilmercúrio , Amilases , Animais , Feminino , Peroxidação de Lipídeos , Compostos de Metilmercúrio/toxicidade , Nitritos , Estresse Oxidativo , Gravidez , Ratos , Ratos Wistar
14.
PeerJ ; 9: e11114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178433

RESUMO

BACKGROUND: Methylmercury (MeHg) is a potent toxicant able to harm human health, and its main route of contamination is associated with the consumption of contaminated fish and other seafood. Moreover, dental amalgams are also associated with mercury release on human saliva and may contribute to the accumulation of systemic mercury. In this way, the oral cavity seems to be the primary location of exposure during MeHg contaminated food ingestion and dental procedures but there is a lack of literature about its effects on dental tissues and the impact of this toxicity on human health. In this way, this study aimed to analyze the effects of different doses of MeHg on human dental pulp stem cells after short-term exposure. METHODS: Dental pulp stem cells from human exfoliated deciduous teeth (SHED) were treated with 0.1, 2.5 and 5 µM of MeHg during 24 h. The MeHg effects were assessed by evaluating cell viability with Trypan blue exclusion assay. The metabolic viability was indirectly assessed by MTT reduction assay. In order to evaluate an indicative of antioxidant defense impairment, cells exposed to 0.1 and 5 µM MeHg were tested by measuring glutathione (GSH) level. RESULTS: It was observed that cell viability decreased significantly after exposure to 2.5 and 5 µM of MeHg, but the metabolic viability only decreased significantly at 5 µM MeHg exposure, accompanied by a significant decrease in GSH levels. These results suggest that an acute exposure of MeHg in concentrations higher than 2.5 µM has cytotoxic effects and reduction of antioxidant capacity on dental pulp stem cells.

15.
Biol Trace Elem Res ; 199(4): 1425-1436, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32564201

RESUMO

High amounts of aluminum (Al) are found in soil and water. It is highly bioavailable, which makes it an important agent of environmental imbalance. Moreover, Al is considered a neurotoxic agent that is associated with several neurodegenerative diseases. Thus, this study investigated the effects of long-term Al chloride (AlCl3) exposure on motor behavior, oxidative biochemistry, and cerebellar tissue parameters. For this, adult Wistar rats were divided into three groups: Al-D1 (8.3 mg kg-1 day-1), Al-D2 (5.2 mg kg-1 day-1), and control (distilled water); all groups were orally exposed for 60 days by intragastric gavage. After the exposure period, animals performed the open field, elevated plus maze, rotarod, and beam walking tests. Then, the blood and cerebellum were collected to evaluate Al levels and biochemical and morphological analyses, respectively. Our results demonstrate that animals exposed to Al doses presented a higher Al level in the blood. In the spontaneous locomotor activity, Al exposure groups had traveled a lower total distance when compared with the control group. There was no statistically significant difference (p > 0.05) between exposed and control groups when anxiogenic profile, forced locomotion, fine motor coordination/balance, pro-oxidative parameter, and density Purkinje cells were compared. Thus, aluminum exposure in equivalent doses to human consumption in urban regions did not promote significant changes in the cerebellum or motor parameters.


Assuntos
Alumínio , Síndromes Neurotóxicas , Alumínio/toxicidade , Cloreto de Alumínio , Animais , Locomoção , Ratos , Ratos Wistar
16.
Biol Trace Elem Res ; 199(8): 2983-2991, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33009984

RESUMO

Methylmercury (MeHg) is one of the main global pollutants. The vulnerability of fetus and newborn to MeHg-induced changes is extensively reported, making relevant investigation possible for alternative sample matrix for human biological monitoring for at this stage of life. This study aimed to characterize tissue change effects of environmental-experimental MeHg on salivary glands of offspring rats after pre- and postnatal exposure. For this, pregnant Wistar rats were orally exposed to MeHg (40 µg/kg BW/day) or only vehicle (control group), from the gestational period to the end of the lactation period. Salivary glands (SG) were collected from the offspring to analyze possible Hg levels and main findings by histopathological evaluations and CK19 and α-SMA immunostaining. The results indicated that Hg levels in SG of intoxicated offspring were associated with histologic abnormalities, such as acinar atrophy and an increase in the intercellular matrix among the acini, as well as damages in the architecture of epithelium and myoepithelial cells, evidenced by a decrease in immunostaining area. Thus, this is the first study to show in the literature the toxicopathologic findings on SG of offspring after pre- and postnatal exposure to MeHg. Moreover, it presents the SG as an attractive target to futures studies, mainly in children exposed to environmentally relevant doses.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Lactação , Compostos de Metilmercúrio/toxicidade , Gravidez , Ratos , Ratos Wistar , Glândulas Salivares
17.
Environ Sci Pollut Res Int ; 28(9): 10918-10930, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33105010

RESUMO

This study aimed to investigate the effects of lead (Pb) exposure on parotid and submandibular glands through morphological aspects as well as the systemic and salivary gland redox state. Male Wistar rats were exposed to 50 mg/kg/day of Pb-acetate or distilled water by intragastric gavage for 55 days (n = 40). Blood samples were used for lipid peroxidation (LPO), glutathione (GSH), and trolox equivalent antioxidant capacity (TEAC) assays. Samples of salivary glands were analyzed by LPO, nitrites (NO), and antioxidant capacity against peroxyl radicals (ACAP) levels. Morphometric analyses (total stromal area [TSA], total parenchyma area [TPA], total ductal area [TDA], and total acinar area [TAA]) and immunohistochemistry for cytokeratin-19 (CK-19), metallothionein I/II (MT I/II), and anti-smooth muscle actin (α-SMA) were performed. The results revealed that exposure to Pb triggered systemic oxidative stress represented by lower GSH levels and increased TBARS/TEAC ratio in blood plasma. ACAP was reduced, while NO and LPO were increased in both parotid and submandibular. The morphological analyses showed increase on MT I/II expression, reduced CK-19 expression in both glands, and α-SMA reduced the immunostaining only in the parotid glands. The morphometric analyses revealed an increase in TPA in both glands, while TAA was reduced only in submandibular glands and TDA was increased only in parotid glands. Our findings are pioneer in showing that long-term exposure to Pb is able to promote blood and glandular oxidative stress associated with cellular, morphological, and biochemical damage in both parotid and submandibular glands.


Assuntos
Chumbo , Glândulas Salivares , Animais , Chumbo/metabolismo , Masculino , Oxirredução , Estresse Oxidativo , Ratos , Ratos Wistar , Glândulas Salivares/metabolismo
18.
Int J Dent ; 2020: 8873462, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33273924

RESUMO

Postmenopausal estrogen deficiency and ethanol (EtOH) abuse are known risk factors for different diseases including bone tissues. However, little is known about the synergic effects of EtOH abuse and estrogen deficiency on alveolar bone loss in women. The present study evaluated the effects of EtOH chronic exposure and ovariectomy on the alveolar bone loss in female rats. For this, 40 female Wistar rats were randomly divided into 4 groups: control, EtOH exposure, ovariectomy (OVX), and OVX plus EtOH exposure. Initially, half of the animals were ovariectomized at 75 days of age. After that, the groups received distilled water or EtOH 6.5 g/kg/day (20% w/v) for 55 days via gavage. Thereafter, animals were sacrificed and the mandibles were collected, dissected, and separated into hemimandibles. Alveolar bone loss was evaluated by measuring the distance between the cementoenamel junction and the alveolar bone crest through a stereomicroscope in 3 different anatomical regions of the tissue. One-way ANOVA and post hoc Tukey were used to compare groups (p < 0.05). The results showed that the ovariectomy and EtOH exposure per se were able to induce alveolar bone loss, and their association did intensify significantly the effect. Therefore, OVX associated with heavy EtOH exposure increase the spontaneous alveolar bone loss in rats.

19.
Ecotoxicol Environ Saf ; 206: 111139, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32861963

RESUMO

Aluminum (Al) is a neurotoxicant agent implicated in several behavioral, neuropathological and neurochemical changes associated with cognitive impairments. Nevertheless, mechanisms of damage and safety concentrations are still very discussed. Thus, the main purpose of this study was to investigate whether two aluminum low doses were able to produce deleterious effects on cognition of adult rats, including oxidative stress in hippocampus and prefrontal cortex, two important areas for cognition. For this, thirty adult Wistar rats were divided into three groups: Al1 (8.3 mg/kg/day), Al2 (32 mg/kg/day) and Control (Ultrapure Water), in which all three groups received their solutions containing or not AlCl3 by intragastric gavage for 60 days. After the experimental period, the short- and long-term memories were assessed by the object recognition test and step-down inhibitory avoidance. After euthanizing, prefrontal cortex and hippocampus samples were dissected for Al levels measurement and evaluation of oxidative biochemistry. Only Al2 increased Al levels in hippocampal parenchyma significantly; both concentrations did not impair short-term memory, while long-term memory was affected in Al1 and Al2. In addition, oxidative stress was observed in prefrontal and hippocampus in Al1 and Al2. Our results indicate that, in a translational perspective, humans are subjected to deleterious effects of Al over cognition even when exposed to low concentrations, by triggering oxidative stress and poor long-term memory performance.


Assuntos
Cloreto de Alumínio/toxicidade , Alumínio/toxicidade , Hipocampo/efeitos dos fármacos , Síndromes Neurotóxicas , Córtex Pré-Frontal/efeitos dos fármacos , Alumínio/administração & dosagem , Alumínio/análise , Cloreto de Alumínio/administração & dosagem , Cloreto de Alumínio/análise , Animais , Hipocampo/química , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Wistar
20.
Ecotoxicol Environ Saf ; 201: 110799, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32544743

RESUMO

Mercury (Hg) is an environmental contaminant that poses great risk to human health. However, it is still widely used in artisanal gold-mining enterprises around the world, especially in developing countries. Methylmercury (MeHg) is produced environmentally by biomethylation of inorganic Hg present in water sediments, leading to its subsequent accumulation in the aquatic food chain. Due to its high metabolic rate, the Central Nervous System (CNS) is one of the main targets of MeHg. In the present study, we investigate the impact of chronic MeHg intoxication on NADPH diaphorase (NADPH-d) activity and astrocyte mobilization in the visual cortex of the rat. After 60 days of MeHg administration by oral gavage (0.04 mg/kg/day), tissue samples containing the visual cortex were submitted to measurements of Hg levels, NADPH-d activity, and GFAP immunohistochemistry for identification of astrocytes. MeHg intoxication was associated with increased Hg deposits and with reduced NADPH-d neuropil reactivity in the visual cortex. A morphometric analysis suggested that NADPH-d-positive neurons were mostly spared from MeHg harmful action and intoxicated animals had astrocytic activation similar to the control group. The decrease in NADPH-d neuropil reactivity may be due to the negative effect of chronic MeHg poisoning on both the synthesis and transport of this enzyme in afferent pathways to the visual cortex. The relative resistance of NADPH-d-reactive neurons to chronic MeHg intoxication may be associated with peculiarities in cell metabolism or to a protective role of nitric oxide, safeguarding those neurons from Hg deleterious effects.


Assuntos
Astrócitos/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Compostos de Metilmercúrio/toxicidade , NADPH Desidrogenase/metabolismo , Neurônios/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos , Animais , Astrócitos/enzimologia , Comportamento Animal/efeitos dos fármacos , Poluentes Ambientais/metabolismo , Ouro , Humanos , Masculino , Compostos de Metilmercúrio/metabolismo , Mineração , Neurônios/enzimologia , Ratos , Ratos Wistar , Córtex Visual/enzimologia , Córtex Visual/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA