Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e29554, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694027

RESUMO

Incised marine valleys (IVS) are hot topics in exploring the stratigraphic oil and gas-bearing plays. Multiple channelized sandstone lenses at varying depths [m], thicknesses [m], and porosities [%] constrain seismic impedance. The presence of hydrocarbon-bearing resources affects the seismic impedance (density (g/cc) and velocity (m/s)). Therefore, a quantitative prediction has been carried out for determining the thickness [m], porosity [%], and depths [m] of laterally distributed channelized sandstone lenses (SLS) for IVS, Indus offshore Basin (IOB), Pakistan, using 2-D instantaneous spectral porosity quantitative modelling (2DSSM), continuous wavelet transforms-based (CWT) 2-D instantaneous spectral density modelling (2DSSDM), and spectral decomposition tools. The 2DSSM remained limited in predicting the number of channelized sandstone lenses and their quantitative stratigraphic attributes. The 45-Hz-based processing of conventional 2DSSM has resolved the two channelized sandstone lenses of the stratigraphic trap. The deepest channelized sandstone lens has attained 1-6 m thickness with a lateral extent of 3 km, within the porosity range of 18-33 %. The highest confidence level for predicted petrophysical attributes such as 13 m-thick pay zones, -0.08, -0.067, and -0.07 acoustic impedances [g/c.c.*m/s], and 28 % porosities with R2 > 0.85 have validated interpretations. The response of 45-Hz CWT waveform-based inverted density and thickness simulations has predicted the highest thicknesses and lowest densities of reservoir sandstones within the meandering channel belt of the deepwater depositional system. The predicted densities and thicknesses for the coarse-grained sandstone lenses of point bars were 1.8-1.9 g/cc and 15 m, respectively. In the same way, the quantitative estimates of predicted density and simulated thickness have shown a strong coefficient correlation (R2 > 0.80), which confirms the presence of gas-bearing prospects within the IVS. The facies-controlled migration is thought to be the movement of the reservoir facies of the point bars and channelled sandstone-filled lenses to the side.

2.
Heliyon ; 10(4): e25907, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390160

RESUMO

Seismic attributes can play an important role in the exploration of hydrocarbon-bearing stratigraphic systems. Incised valley systems are developed during the falling sea, which causes the deposition of coarse-grained sandstone facies inside the low-standing tracts (LST). These regional phenomena constrain the quantitative attributes of ultra-thin-bedded stratigraphic petroleum traps, e.g., vertical and lateral variations in the thickness, accommodation space, lithology, and porosity. This study deals with the application of the continuous wavelet transform (CWT) of a spectral decomposition (SD) tool on a 3D post-stack seismic volume of the Miano gas Field, Lower Indus basin, Pakistan. The results show that the CWT accurately detected the regionally faulted/fractured system and distinguished the frequency-dependent amplitude anomalies. The wedge model resolved a 24-meter-thick gas-bearing resource. Quality control analysis was carried out using CWT-based broadband processing between the designed amplitude spectrum of 17 Hz and 70 Hz. The reservoirs with over 25% porosity that were located within the shale-dominated facies with less than 8% porosity were imaged through the processing of the instantaneous spectral porosity model at the 48-Hz tuning block. Moreover, 190 to 165-m-thick thin-bedded sandstone reservoirs at a 25% porosity zone were resolved using 22-Hz and 28-Hz, which implicates the sea standstill and medium-to-coarse-grained depositional reservoir facies. The ultra-thin-bedded traps inside the laterally continuous stratigraphic lens of 121 m and the prograding clinoform lens of 101-m within the incised valley petroleum system were resolved using 48-Hz, which implicates the falling sea and fine-scaled transgressed erosional facies. These implications suggest that the identified regional stratigraphic traps have development potential for this gas field. The treatment of the inverted model at the highest frequencies can be utilized to investigate the porous stratigraphically trapped facies of LST and can serve as an important analogue for the leading gas field of the Indus Basin and similar basins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA