Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Adv Mater ; 34(11): e2108120, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34997657

RESUMO

Single-emitter plasmonic patch antennas are room-temperature deterministic single-photon sources, which exhibit highly accelerated and directed single-photon emission. However, for efficient operation these structures require 3D nanoscale deterministic control of emitter positioning within the device, which is a demanding task, especially when emitter damage during fabrication is a major concern. To overcome this limitation, the deterministic room-temperature in situ optical lithography protocol uses spatially modulated light to position a plasmonic structure nondestructively on any selected single-emitter with 3D nanoscale control. Herein, the emission statistics of such plasmonic antennas that embed a deterministically positioned single colloidal CdSe/CdS quantum dot, which highlight acceleration and brightness of emission, are analyzed. It is demonstrated that the presented antenna induces a 1000-fold effective increase in the absorption cross-section, and, under high pumping, these antennas show nonlinearly enhanced emission.

2.
ACS Appl Mater Interfaces ; 12(32): 35845-35855, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32805785

RESUMO

Compared to the visible and near-infrared, the short-wave infrared region (SWIR; 1000-2000 nm) has excellent properties for in vivo imaging: low autofluorescence, reduced scattering, and a low-absorption cross-section of blood or tissue. However, the general adoption of SWIR imaging in biomedical research will be enhanced by a broader availability of versatile and bright contrast materials. Quantum dots (QDs) are bright and compact SWIR emitters with narrow size distributions and emission spectra, but their use is limited by the shortcomings of established ligand systems for SWIR QDs. Established ligands often result in SWIR probes with either limited colloidal stability, large size, or broad size distribution or a combination of all three. We present a polymeric QD ligand designed to be compatible with oleate-coated QDs. Our polymeric acid ligand is a copolymer bearing carboxylic acid anchoring groups and PEG-550 chains to solubilize the QD-ligand construct. After a mild and rapid ligand exchange, the resulting constructs are compact (<11 nm hydrodynamic diameter) and have narrow size distribution. Both qualities are preserved for several months in isotonic saline. The constructs are bright in vivo, and to demonstrate their suitability for imaging, we perform whole-body imaging and lymphatic imaging, including visualization of lymphatic flow.


Assuntos
Ácidos Carboxílicos/química , Corantes Fluorescentes/química , Imagem Óptica/métodos , Pontos Quânticos/química , Alanina/química , Animais , Raios Infravermelhos , Ligantes , Linfonodos/diagnóstico por imagem , Masculino , Metacrilatos/química , Camundongos , Camundongos Nus , Ácido Oleico/química , Polietilenoglicóis/química , Solubilidade , Propriedades de Superfície , Água
3.
Light Sci Appl ; 9: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194947

RESUMO

Coupling nano-emitters to plasmonic antennas is a key milestone for the development of nanoscale quantum light sources. One challenge, however, is the precise nanoscale positioning of the emitter in the structure. Here, we present a laser etching protocol that deterministically positions a single colloidal CdSe/CdS core/shell quantum dot emitter inside a subwavelength plasmonic patch antenna with three-dimensional nanoscale control. By exploiting the properties of metal-insulator-metal structures at the nanoscale, the fabricated single-emitter antenna exhibits a very high-Purcell factor (>72) and a brightness enhancement of a factor of 70. Due to the unprecedented quenching of Auger processes and the strong acceleration of the multiexciton emission, more than 4 photons per pulse can be emitted by a single quantum dot, thus increasing the device yield. Our technology can be applied to a wide range of photonic nanostructures and emitters, paving the way for scalable and reliable fabrication of ultra-compact light sources.

4.
Nat Nanotechnol ; 15(4): 277-282, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31988504

RESUMO

The surface of nominally diamagnetic colloidal CdSe nanoplatelets can demonstrate paramagnetic behaviour owing to the uncompensated spins of dangling bonds, as we reveal here by optical spectroscopy in high magnetic fields up to 15 T using the exciton spin as a probe of the surface magnetism. The strongly nonlinear magnetic field dependence of the circular polarization of the exciton emission is determined by the magnetization of the dangling-bond spins (DBSs), the exciton spin polarization as well as the spin-dependent recombination of dark excitons. The sign of the exciton-DBS exchange interaction depends on the nanoplatelet growth conditions.

5.
Nano Lett ; 20(2): 1370-1377, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31960677

RESUMO

The low-temperature emission spectrum of CdSe colloidal nanoplatelets (NPLs) consists of two narrow lines. The high-energy line stems from the recombination of neutral excitons. The origin of the low-energy line is currently debated. We experimentally study the spectral shift, emission dynamics, and spin polarization of both lines at low temperatures down to 1.5 K and in high magnetic fields up to 60 T and show that the low-energy line originates from the recombination of negatively charged excitons (trions). This assignment is confirmed by the NPL photocharging dynamics and associated variations in the spectrum. We show that the negatively charged excitons are considerably less sensitive to the presence of surface spins than the neutral excitons. The trion binding energy in three-monolayer-thick NPLs is as large as 30 meV, which is 4 times larger than its value in the two-dimensional limit of a conventional CdSe quantum well confined between semiconductor barriers. A considerable part of this enhancement is gained by the dielectric enhancement effect, which is due to the small dielectric constant of the environment surrounding the NPLs.

6.
Nano Lett ; 20(1): 517-525, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31825228

RESUMO

CdSe colloidal nanoplatelets are studied by spin-flip Raman scattering in magnetic fields up to 5 T. We find pronounced Raman lines shifted from the excitation laser energy by an electron Zeeman splitting. Their polarization selection rules correspond to those expected for scattering mediated by excitons interacting with resident electrons. Surprisingly, Raman signals shifted by twice the electron Zeeman splitting are also observed. The theoretical analysis and experimental dependences show that the mechanism responsible for the double flip involves two resident electrons interacting with a photoexcited exciton. Effects related to various orientations of the nanoplatelets in the ensemble and different orientations of the magnetic field are analyzed.

7.
ACS Appl Mater Interfaces ; 11(36): 32928-32936, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31416312

RESUMO

Intensive research of hybrid metal-halide perovskite materials for use as photoactive materials has resulted in an unmatched increase in the power conversion efficiency of perovskite photovoltaics (PVs) over the last couple of years. Now that lab-fabricated perovskite devices rival the efficiency of silicon PVs, the next challenge of scalable mass manufacturing of large perovskite PV panels remains to be solved. For that purpose, it is still unclear which manufacturing method will provide the lowest processing cost and highest quality solar cells. Vapor deposition has been proven to work well for perovskites as a controllable and repeatable thin-film deposition technique but with processing speeds currently too slow to adequately lower the production costs. Addressing this challenge, in the present work, we demonstrate a high-speed vapor transport processing technique in a custom-built reactor that produces high-quality perovskite films with unprecedented deposition speed exceeding 1 nm/s, over 10× faster than previous vapor deposition demonstrations. We show that the semiconducting perovskite films produced with this method have excellent crystallinity and optoelectronic properties with 10 ns charge carrier lifetime, enabling us to fabricate the first photovoltaic devices made by perovskite vapor transport deposition. Our experiments are guided by computational fluid dynamics simulations that also predict that this technique could lead to deposition rates on the order of micrometers per second. This, in turn, could enable cost-effective scalable manufacturing of the perovskite-based solar technologies.

8.
Nano Lett ; 18(1): 373-380, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29160075

RESUMO

We address spin properties and spin dynamics of carriers and charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Magneto-optical studies are performed by time-resolved and polarization-resolved photoluminescence, spin-flip Raman scattering and picosecond pump-probe Faraday rotation in magnetic fields up to 30 T. We show that at low temperatures the nanoplatelets are negatively charged so that their photoluminescence is dominated by radiative recombination of negatively charged excitons (trions). Electron g-factor of 1.68 is measured, and heavy-hole g-factor varying with increasing magnetic field from -0.4 to -0.7 is evaluated. Hole g-factors for two-dimensional structures are calculated for various hole confining potentials for cubic- and wurtzite lattice in CdSe core. These calculations are extended for various quantum dots and nanoplatelets based on II-VI semiconductors. We developed a magneto-optical technique for the quantitative evaluation of the nanoplatelets orientation in ensemble.

9.
Nanoscale ; 10(2): 646-656, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29239445

RESUMO

We study the band-edge exciton fine structure and in particular its bright-dark splitting in colloidal semiconductor nanocrystals by four different optical methods based on fluorescence line narrowing and time-resolved measurements at various temperatures down to 2 K. We demonstrate that all these methods provide consistent splitting values and discuss their advances and limitations. Colloidal CdSe nanoplatelets with thicknesses of 3, 4 and 5 monolayers are chosen for experimental demonstrations. The bright-dark splitting of excitons varies from 3.2 to 6.0 meV and is inversely proportional to the nanoplatelet thickness. Good agreement between experimental and theoretically calculated size dependence of the bright-dark exciton splitting is achieved. The recombination rates of the bright and dark excitons and the bright to dark relaxation rate are measured by time-resolved techniques.

10.
Nano Lett ; 17(11): 6838-6846, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29039964

RESUMO

Cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals (PNCs) have recently become a promising material for optoelectronic applications due to their high emission quantum yields and facile band gap tunability via both halide composition and size. The spectroscopy of single PNCs enhances our understanding of the effect of confinement on excitations in PNCs in the absence of obfuscating ensemble averaging and can also inform synthetic efforts. However, single PNC studies have been hampered by poor PNC photostability under confocal excitation, precluding interrogation of all but the most stable PNCs, and leading to a lack of understanding of PNCs in the regime of high confinement. Here, we report the first comprehensive spectroscopic investigation of single PNC properties using solution-phase photon-correlation methods, including both highly confined and blue-emitting PNCs, previously inaccessible to single NC techniques. With minimally perturbative solution-phase photon-correlation Fourier spectroscopy (s-PCFS), we establish that the ensemble emission linewidth of PNCs of all sizes and compositions is predominantly determined by the intrinsic single PNC linewidth (homogeneous broadening). The single PNC linewidth, in turn, dramatically increases with increasing confinement, consistent with what has been found for II-VI semiconductor nanocrystals. With solution-phase photon antibunching measurements, we survey the biexciton-to-exciton quantum yield ratio (BX/X QY) in the absence of user-selection bias or photodegradation. Remarkably, the BX/X QY ratio depends both on the PNC size and halide composition, with values between ∼2% for highly confined bromide PNCs and ∼50% for intermediately confined iodide PNCs. Our results suggest a wide range of underlying Auger rates, likely due to transitory charge carrier separation in PNCs with relaxed confinement.

11.
Chem Commun (Camb) ; 53(32): 4517, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28383585

RESUMO

Correction for 'Colloidal atomic layer deposition growth of PbS/CdS core/shell quantum dots' by Michel Nasilowski et al., Chem. Commun., 2017, 53, 869-872.

12.
Nat Nanotechnol ; 12(6): 569-574, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28288118

RESUMO

Non-magnetic colloidal nanostructures can demonstrate magnetic properties typical for diluted magnetic semiconductors because the spins of dangling bonds at their surface can act as the localized spins of magnetic ions. Here we report the observation of dangling-bond magnetic polarons (DBMPs) in 2.8-nm diameter CdSe colloidal nanocrystals (NCs). The DBMP binding energy of 7 meV is measured from the spectral shift of the emission lines under selective laser excitation. The polaron formation at low temperatures occurs by optical orientation of the dangling-bond spins (DBSs) that result from dangling-bond-assisted radiative recombination of spin-forbidden dark excitons. Modelling of the temperature dependence of the DBMP-binding energy and emission intensity shows that the DBMP is composed of a dark exciton and about 60 DBSs. The exchange integral of one DBS with the electron confined in the NC is ∼0.12 meV.

13.
Chem Commun (Camb) ; 53(5): 869-872, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28000806

RESUMO

Traditionally, PbS/CdS quantum dots (QDs) have been synthesized via a cation exchange method, making fine control over shell growth challenging. We show here that colloidal atomic layer deposition (c-ALD) allows for the sequential growth of single monolayers of the shell, thus creating a 'true' CdS shell on PbS QDs.

14.
Nat Nanotechnol ; 11(12): 1112-1119, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27548358

RESUMO

Functionalization of quantum dots (QDs) with a single biomolecular tag using traditional approaches in bulk solution has met with limited success. DNA polyhedra consist of an internal void bounded by a well-defined three-dimensional structured surface. The void can house cargo and the surface can be functionalized with stoichiometric and spatial precision. Here, we show that monofunctionalized QDs can be realized by encapsulating QDs inside DNA icosahedra and functionalizing the DNA shell with an endocytic ligand. We deployed the DNA-encapsulated QDs for real-time imaging of three different endocytic ligands-folic acid, galectin-3 (Gal3) and the Shiga toxin B-subunit (STxB). Single-particle tracking of Gal3- or STxB-functionalized QD-loaded DNA icosahedra allows us to monitor compartmental dynamics along endocytic pathways. These DNA-encapsulated QDs, which bear a unique stoichiometry of endocytic ligands, represent a new class of molecular probes for quantitative imaging of endocytic receptor dynamics.


Assuntos
DNA/química , Endocitose/fisiologia , Imagem Molecular/métodos , Pontos Quânticos/química , Animais , Cricetulus , Difusão Dinâmica da Luz , Endossomos/metabolismo , Fibroblastos/metabolismo , Ácido Fólico/química , Galectina 3/análise , Galectina 3/química , Galectina 3/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Imagem Molecular/instrumentação , Toxinas Shiga/análise , Toxinas Shiga/química , Toxinas Shiga/metabolismo
15.
Chem Rev ; 116(18): 10934-82, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27434678

RESUMO

In this paper, we review recent progress on colloidal growth of 2D nanocrystals. We identify the four main sources of anisotropy which lead to the formation of plate- and sheet-like colloidal nanomaterials. Defect-induced anisotropy is a growth method which relies on the presence of topological defects at the nanoscale to induce 2D shapes objects. Such a method is particularly important in the growth of metallic nano-objects. Another way to induce anisotropy is based on ligand engineering. The availability of some nanocrystal facets can be tuned by selectively covering the surface with ligands of tunable thickness. Cadmium chalcogenides nanoplatelets (NPLs) strongly rely on this method which offers atomic control in the thinner direction, down to a few monolayers. Two-dimensional objects can also be obtained by post or in situ self-assembly of nanocrystals. This growth method differs from the previous ones in the sense that the elementary objects are not molecular precursors and is a common method for lead chalcogenide compounds. Finally, anisotropy may simply rely on the lattice anisotropy itself as it is common for rod-like nanocrystals. Colloidally grown transition metal dichalcogenides (TMDC) in particular result from such process. We also present hybrid syntheses which combine several of the previously described methods and other paths, such as cation exchange, which expand the range of available materials. Finally, we discuss in which sense 2D objects differ from 0D nanocrystals and review some of their applications in optoelectronics, including lasing and photodetection, and biology.

16.
Nano Lett ; 16(3): 2047-53, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26863992

RESUMO

Luminescent colloidal CdSe nanoplatelets with atomically defined thicknesses have recently been developed, and their potential for various applications has been shown. To understand their special properties, experiments have until now focused on the relatively short time scales of at most a few nanoseconds. Here, we measure the photoluminescence decay dynamics of colloidal nanoplatelets on time scales up to tens of microseconds. The excited state dynamics are found to be dominated by the slow (∼µs) dynamics of temporary exciton storage in a charge-separated state, previously overlooked. We study the processes of charge carrier separation and exciton recovery in pure CdSe nanoplatelets as well as in core-crown and core-shell CdSe/CdS nanoplatelets with high ensemble quantum yields of 50%, and discuss the implications. Our work highlights the importance of reversible charge carrier trapping and experiments over a wide range of time scales for the understanding of colloidal nanoemitters in general and nanoplatelets in particular.

17.
Sci Rep ; 5: 16796, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26577533

RESUMO

We demonstrate a spatially uniform enhancement of individual quantum dot (QD) fluorescence emission using plasmonic grating decouplers on thin gold or silver films. Individual QDs are deposited within the grating in a controlled way to investigate the position dependency on both the radiation pattern and emission enhancement. We also describe the optimization of the grating decoupler. We achieve a fluorescence enhancement ~3 times higher than using flat plasmon film, for any QD position in the grating.

18.
Nano Lett ; 15(6): 3953-8, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25990468

RESUMO

Auger recombination is a major limitation for the fluorescent emission of quantum dots (QDs). It is the main source of QDs fluorescence blinking at the single-particle level. At high-power excitation, when several charge carriers are formed inside a QD, Auger becomes more efficient and severely decreases the quantum yield (QY) of multiexcitons. This limits the efficiency and the use of colloidal QDs in applications where intense light output is required. Here, we present a new generation of thick-shell CdSe/CdS QDs with dimensions >40 nm and a composition gradient between the core and the shell that exhibits 100% QY for the emission of both the monoexciton and the biexciton in air and at room temperature for all the QDs we have observed. The fluorescence emission of these QDs is perfectly Poissonian at the single-particle level at different excitation levels and temperatures, from 30 to 300 K. In these QDs, the emission of high-order (>2) multiexcitons is quite efficient, and we observe white light emission at the single-QD level when high excitation power is used. These gradient thick shell QDs confirm the suppression of Auger recombination in gradient core/shell structures and help further establish the colloidal QDs with a gradient shell as a very stable source of light even under high excitation.


Assuntos
Compostos de Cádmio/química , Fluorescência , Pontos Quânticos/química , Compostos de Selênio/química , Sulfetos/química
19.
Nat Nanotechnol ; 10(2): 170-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25581887

RESUMO

Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

20.
Nano Lett ; 15(2): 1252-8, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25607231

RESUMO

The near-field Coulomb interaction between a nanoemitter and a graphene monolayer results in strong Förster-type resonant energy transfer and subsequent fluorescence quenching. Here, we investigate the distance dependence of the energy transfer rate from individual, (i) zero-dimensional CdSe/CdS nanocrystals and (ii) two-dimensional CdSe/CdS/ZnS nanoplatelets to a graphene monolayer. For increasing distances d, the energy transfer rate from individual nanocrystals to graphene decays as 1/d(4). In contrast, the distance dependence of the energy transfer rate from a two-dimensional nanoplatelet to graphene deviates from a simple power law but is well described by a theoretical model, which considers a thermal distribution of free excitons in a two-dimensional quantum well. Our results show that accurate distance measurements can be performed at the single particle level using graphene-based molecular rulers and that energy transfer allows probing dimensionality effects at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA