Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 270: 110883, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721322

RESUMO

In this research, recycled polyacrylonitrile fibers (PANFs) acquired from the textile recycling process were amino-functionalized in one simple step by means of ethylenediamine (EDA). The amino-functionalized polyacrylonitrile fibers (AF-PANFs) were utilized for adsorption of Hg(II) ions from aquatic media. Temperature and contact time during the synthesis were optimized by the Central Composite Design (CCD) method. FE-SEM, EDS, BET, and FT-IR analysis, and pHZPC measurement were conducted to characterize the features of the AF-PANFs. The average diameter of raw fiber was 20 µm, which increased 20 percent after functionalizing. The impact of independent parameters on the adsorption process was investigated using the Box-Behnken Design (BBD) method during the batch experiments. The column tests were conducted in a semi-continuous system with the removal efficiency of over 99% for various initial concentrations after specific cycles. Freundlich, Langmuir, UT, Redlich-Peterson, and Temkin isotherm models were employed to analyze the relation between the final concentration of Hg(II) (Co) and the equilibrium adsorption capacity (qe) of the AF-PANFs. According to the isotherm models and experimental results, the maximum qe of the AF-PANFs was 1116 mg g-1 at initial Hg(II) concentration of 850 mg L-1, contact time of 120 min, solution pH of 6, and at 40 °C. Kinetic and thermodynamic studies illustrated the approximate equilibrium time and endothermicity or exothermicity of the process. Regeneration of the AF-PANFs was accomplished for seven times without efficiency drop. The superb performance of the AF-PANFs in the presence of co-existing ions did not decline.


Assuntos
Mercúrio , Poluentes Químicos da Água/análise , Resinas Acrílicas , Adsorção , Etilenodiaminas , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
2.
J Environ Manage ; 264: 110409, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250883

RESUMO

In this research, a unique continuous electrochemical cell was designed and applied for the disinfection of groundwater and simultaneous Cr(VI) reduction and Cr(III) precipitation. Discarded cigarette filters (DCFs) were utilized as an efficient bed for palladium nanoparticles (PdNPs) immobilization located between porous anode and cathode made of graphite felt. The characterization of the bed was performed using FE-SEM, EDS, BET, and FT-IR analysis. The results confirmed the distribution of palladium nanoparticles on the surface of DCFs. The proposed design for electrochemical cell obviated the need to divide the anolyte and catholyte because the anode was located at the outlet of the cell, thereby avoiding the reaction between hydrogen radicals produced on the surface of PdNPs and oxygen and chlorine produced in the anode. The hydrogen gas produced in the cathode was converted to hydrogen radicals, acting as the most prominent species for the reduction. Hydroxide ions produced in the cathode increased the pH of the solution between electrodes, resulting in the precipitation of Cr (III) with an efficiency of 96%. Furthermore, free chlorine at the concentration of 1 mg L-1 was generated through chloride ion oxidation in the anode, which can be effective for disinfection. The effect of initial Cr (VI) concentration (C0), flow rate (Q), and current (I) was investigated, and the maximum removal efficiency (99.7%) was observed at the flow rate of 5 mL min-1 and current of 0.05 A, respectively. No interference ensued from the various coexisting ions in groundwater. The findings of this study suggested that the proposed electrochemical cell is capable of in-situ total chromium removal and free chlorine production in groundwater simultaneously.


Assuntos
Água Subterrânea , Nanopartículas Metálicas , Poluentes Químicos da Água , Cromo , Oxirredução , Paládio , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA