Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38247455

RESUMO

Chronic obstructive pulmonary disease (COPD) is a complex pulmonary condition characterized by bronchitis, emphysema, and mucus stasis. Due to the variability in symptoms among patients, traditional approaches to treating COPD as a singular disease are limited. This led us to focus on phenotype/endotype classifications. In this study, we explore the potential therapeutic role of thyroid hormone (T3) by using mouse models: emphysema-dominant elastase-induced COPD and airway-dominant C57BL/6-ßENaC-Tg to represent different types of the disease. Here, we showed that intratracheal T3 treatment (40, 80 µg/kg, i.t., every other day) resulted in significant improvements regarding emphysema and the enhancement of respiratory function in the elastase-induced COPD model. T3-dependent improvement is likely linked to the up-regulation of Ppargc1a, a master regulator of mitochondrial biogenesis, and Gclm, a factor associated with oxidative stress. Conversely, neither short- nor long-term T3 treatments improved COPD pathology in the C57BL/6-ßENaC-Tg mice. Because the up-regulation of extrathyroidal T3-producing enzyme Dio2, which is also considered a marker of T3 requirement, was specifically observed in elastase-induced COPD lungs, these results demonstrate that exogenous T3 supplementation may have therapeutic potential for acute but not chronic COPD exacerbation. Moreover, this study highlights the relevance of considering not only COPD phenotypes but also COPD endotypes (expression levels of Ppargc1a and/or Dio2) in the research and development of better treatment approaches for COPD.

2.
J Pharmacol Sci ; 149(2): 37-45, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35512853

RESUMO

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death in the world, and has no radical treatment. Inhibition of amiloride-sensitive epithelial sodium ion channel (ENaC) has now been considered as a potential therapeutic target against COPD. One possible modulator of ENaC is AMP-activated protein kinase (AMPK), a key molecule that controls a wide variety of cellular signals; however, little is known about whether metformin, a clinically available AMPK activator, has a protective role against ENaC-associated chronic pulmonary phenotypes, such as emphysema and pulmonary dysfunction. We first used ENaC-overexpressing human bronchial epithelial cells (ß/γENaC-16HBE14o-) and identified that Metformin significantly reduced ENaC activity. Consistently, in vivo treatment of ENaC-overexpressing COPD mouse model (C57BL/6-ßENaC-Tg mice) showed improvement of emphysema and pulmonary dysfunction, without any detrimental effect on non-pulmonary parameters (blood glucose level etc.). Bronchoalveolar lavage fluid (BALF) and lung tissue analyses revealed significant suppression in the infiltration of neutrophils as well as the expression of inflammatory markers (KC), neutrophil gelatinase (MMP9) and macrophage elastase (MMP12) in metformin-treated C57BL/6-ßENaC-Tg mice. Overall, the present study demonstrates that metformin directly inhibits ENaC activity in vitro and provides the first evidence of therapeutical benefit of Metformin for COPD with higher ENaC activity.


Assuntos
Enfisema , Metformina , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Modelos Animais de Doenças , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Pulmão/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/genética
3.
Sci Rep ; 10(1): 4313, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152335

RESUMO

Melinjo seed extract (MSE) contains large amounts of polyphenols, including dimers of trans-resveratrol (e.g. gnetin C, L, gnemonoside A, B and D), and has been shown to potentially improve obesity. However, there is no clinical evidence regarding the anti-obesity effects of MSE, and its mechanisms are also unclear. We investigated the hypothesis that MSE supplementation increases the adiponectin (APN) multimerization via the up-regulation of disulfide bond A oxidoreductase-like protein (DsbA-L) under either or both physiological and obese conditions. To investigate the effect of MSE on the physiological condition, 42 healthy young volunteers were enrolled in a randomized, double-blind placebo-controlled clinical trial for 14 days. The participants were randomly assigned to the MSE 150 mg/day, MSE 300 mg/day or placebo groups. Furthermore, in order to investigate the effect of MSE on APN levels under obese conditions, we administered MSE powder (500 or 1000 mg/kg/day) to control-diet- or high-fat-diet (HFD)-fed C57BL/6 mice for 4 weeks. All participants completed the clinical trial. The administration of MSE 300 mg/day was associated with an increase in the ratio of HMW/total APN in relation to the genes regulating APN multimerization, including DsbA-L. Furthermore, this effect of MSE was more pronounced in carriers of the DsbA-L rs191776 G/T or T/T genotype than in others. In addition, the administration of MSE to HFD mice suppressed their metabolic abnormalities (i.e. weight gain, increased blood glucose level and fat mass accumulation) and increased the levels of total and HMW APN in serum and the mRNA levels of ADIPOQ and DsbA-L in adipose tissue. The present study suggests that MSE may exert beneficial effects via APN multimerization in relation to the induction of DsbA-L under both physiological and obese conditions.


Assuntos
Adiponectina/química , Regulação da Expressão Gênica/efeitos dos fármacos , Gnetum/química , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Multimerização Proteica/efeitos dos fármacos , Adiponectina/metabolismo , Adulto , Animais , Dieta Hiperlipídica/efeitos adversos , Método Duplo-Cego , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/etiologia , Obesidade/fisiopatologia , Estudos Prospectivos , Sementes/química , Regulação para Cima , Adulto Jovem
4.
Biol Pharm Bull ; 43(4): 725-730, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32009028

RESUMO

Epithelial sodium channel (ENaC) is an amiloride-sensitive sodium ion channel that is expressed in epithelial tissues. ENaC overexpression and/or hyperactivation in airway epithelial cells cause sodium over-absorption and dysregulated ciliary movement for mucus clearance; however, the agents that suppress constitutive airway ENaC activation are yet to be clinically available. Here, we focused on macrolides, which are widely used antibiotics that have many potential immunomodulatory effects. We examined whether macrolides could modulate constitutive ENaC activity and downstream events that typify cystic fibrosis (CF) and chronic obstructive pulmonary diseases (COPD) in in vitro and in vivo models of ENaC overexpression. Treatment of ENaC-overexpressing human bronchial epithelial cells (ß/γENaC-16HBE14o- cells) with three macrolides (erythromycin, clarithromycin, azithromycin) confirmed dose-dependent suppression of ENaC function. For in vivo studies, mice harboring airway specific ßENaC overexpression (C57BL/6J-ßENaC-transgenic mice) were treated orally with azithromycin, a well-established antimicrobial agent that has been widely prescribed. Azithromycin treatment modulated pulmonary mechanics, emphysematous phenotype and pulmonary dysfunction. Notably, a lower dose (3 mg kg-1) of azithromycin significantly increased forced expiratory volume in 0.1 s (FEV0.1), an inverse indicator of bronchoconstriction. Although not statistically significant, improvement of pulmonary obstructive parameters such as emphysema and lung dysfunction (FEV0.1%) was observed. Our results demonstrate that macrolides directly attenuate constitutive ENaC function in vitro and may be promising for the treatment of obstructive lung diseases with defective mucociliary clearance, possibly by targeting ENaC hyperactivation.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Agonistas do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/fisiologia , Animais , Linhagem Celular , Canais Epiteliais de Sódio/genética , Volume Expiratório Forçado , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiologia , Masculino , Camundongos Transgênicos , Capacidade Vital
5.
Biol Pharm Bull ; 42(3): 489-495, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626802

RESUMO

Cystic fibrosis (CF), the most common lethal inherited disorder caused by mutation in the gene encoding the CF transmembrane regulator (CFTR), is characterized by chronic inflammation that ultimately leads to death from respiratory failure. In CF patients, up-regulation of toll-like receptor-2 (TLR2), a pattern recognition receptor that senses CF-pathogenic bacteria Staphylococcus aureus peptidoglycan (PGN), in airway epithelial cells is observed, and enhanced proinflammatory responses towards PGN may result in detrimental effects in CF patients. Here, we showed that curcumin, a well known anti-inflammatory agent derived from the curry spice turmeric, inhibits TLR2 expression in CF bronchial epithelial cell line, CFBE41o- cells. Strong suppression of TLR2 gene and protein expression was observed at more than 40 µM of curcumin treatment in CFBE41o- cells. Consistent with decreased expression of TLR2, PGN-dependent interleukin-8 (IL-8) gene up-regulation was markedly reduced by 40 µM of curcumin treatment. Strong reductions of TLR2 gene expression and function were also observed in primary human CF bronchial epithelial cells, but not in human non-CF primary cells. Interestingly, curcumin treatment decreased nuclear expression of transcription factor specificity protein 1 (SP1), a factor that is critical for increased basal TLR2 expression in CF cell line and primary cells. Finally, curcumin-dependent SP1 reduction was diminished by anti-oxidant N-acetylcystein (NAC) and proteasomal inhibitor MG-132, suggesting the crucial roles of oxidative and proteasomal degradation pathways. Taken together, our study shows that curcumin down-regulates TLR2 gene expression and function in CF bronchial epithelial cells possibly by accelerating SP1 degradation via an oxidative process.


Assuntos
Brônquios/citologia , Curcumina/farmacologia , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Linhagem Celular , Fibrose Cística , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Oxirredução , Complexo de Endopeptidases do Proteassoma , Receptor 2 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA