Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Angew Chem Int Ed Engl ; 62(46): e202309981, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37684219

RESUMO

Anisotropic NMR spectroscopy, revealing residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs) has emerged as a powerful tool to determine the configurations of synthetic and complex natural compounds. The deduction of the absolute in addition to the relative configuration is one of the primary goals in the field. Therefore, the investigation of the enantiodiscriminating capabilities of chiral alignment media becomes essential. While RDCs and RCSAs are now used for the determination of the relative configuration routinely, RCSAs have not been measured in chiral alignment media such as chiral liquid crystals. Herein, we present this application by measuring RCSAs for chiral analytes such as indanol and isopinocampheol in the lyotropic liquid crystalline phase of an L-valine derived helically chiral polyacetylenes. We have also demonstrated that a single 1D 13 C-{1 H} NMR spectrum suffices to get the RCSAs circumventing the necessity to acquire two spectra at two alignment conditions.

2.
Mar Drugs ; 20(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35877755

RESUMO

The seaweed Sargassum muticum, collected on the southern coast of Galicia, yielded a tetraprenyltoluquinol chromane meroditerpene compound known as 1b, whose structure is revised. The relative configuration of 1b was determined by J-based configurational methodology combined with an iJ/DP4 statistical analysis and further confirmed by measuring two anisotropic properties: carbon residual chemical shift anisotropies (13C-RCSAs) and one-bond 1H-13C residual dipolar couplings (1DCH-RDCs). The absolute configuration of 1b was deduced by ECD/OR/TD-DFT methods and established as 3R,7S,11R.


Assuntos
Sargassum , Anisotropia , Carbono/química , Sargassum/química
3.
Magn Reson Chem ; 59(5): 569-576, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31758720

RESUMO

Determination of configurations and conformations is an important step in the structural characterization of small molecules. Apart from utilizing isotropic J-couplings and nuclear overhauser effect (NOEs) measured in isotropic solution, anisotropic Nuclear Magnetic resonance (NMR) data such as residual dipolar couplings and residual chemical shift anisotropies (RCSAs) were also used to elucidate complex small molecule structures. Measuring RCSA has always been historically difficult due to the isotropic shift effect accompanied by molecular alignment and therefore only occasionally applied in a few examples. Here, we present a robust measurement of carbon RCSAs using a smaller gel-stretching device to determine the structures of a few small molecules. A systematic study on how different density functional theory computed anisotropies of the chemical shift anisotropy tensors impact RCSA data interpretation has also been discussed. We also discuss the effect of utilizing various carbons as reference nuclei for RCSA data extraction as well as the orientation behavior of estrone in orthogonal alignment media.

4.
Nat Commun ; 11(1): 4372, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873801

RESUMO

3D molecular structure determination is a challenge for organic compounds or natural products available in minute amounts. Proton/proton and proton/carbon correlations yield the constitution. J couplings and NOEs oftentimes supported by one-bond 1H,13C residual dipolar couplings (RDCs) or by 13C residual chemical shift anisotropies (RCSAs) provide the relative configuration. However, these RDCs or carbon RCSAs rely on 1% natural abundance of 13C preventing their use for compounds available only in quantities of a few 10's of µgs. By contrast, 1H RCSAs provide similar information on spatial orientation of structural moieties within a molecule, while using the abundant 1H spin. Herein, 1H RCSAs are accurately measured using constrained aligning gels or liquid crystals and applied to the 3D structural determination of molecules with varying complexities. Even more, deuterated alignment media allow the elucidation of the relative configuration of around 35 µg of a briarane compound isolated from Briareum asbestinum.


Assuntos
Antozoários/química , Produtos Biológicos/química , Diterpenos/química , Conformação Molecular , Prótons , Animais , Anisotropia , Espectroscopia de Prótons por Ressonância Magnética
7.
J Chem Theory Comput ; 16(4): 2561-2569, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32192342

RESUMO

Protonation states of titratable amino acids play a key role in many biomolecular processes. Knowledge of protonatable residue charges at a given pH is essential for a correct understanding of protein catalysis, inter- and intramolecular interactions, substrate binding, and protein dynamics for instance. However, acquiring experimental values for individual amino acid protonation states of complex systems is not straightforward; therefore, several in silico approaches have been developed to tackle this issue. In this work, we assess the accuracy of our previously developed constant pH MD approach by comparing our theoretically obtained pKa values for titratable residues with experimental values from an equivalent NMR study. We selected a set of four pentapeptides, of adequately small size to ensure comprehensive sampling, but concurrently, due to their charge composition, posing a challenge for protonation state calculation. The comparison of the pKa values shows good agreement of the experimental and the theoretical approach with a largest difference of 0.25 pKa units. Further, the corresponding titration curves are in fair agreement, although the shift of the Hill coefficient from a value of 1 was not always reproduced in simulations. The phase space overlap in Cartesian space between trajectories generated in constant pH and standard MD simulations is fair and suggests that our constant pH MD approach reasonably well preserves the dynamics of the system, allowing dynamic protonation MD simulations without introducing structural artifacts.


Assuntos
Simulação de Dinâmica Molecular , Oligopeptídeos/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Prótons , Solventes/química
8.
Nat Commun ; 10(1): 476, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696819

RESUMO

Eukaryotic algae rose to ecological relevance after the Neoproterozoic Snowball Earth glaciations, but the causes for this consequential evolutionary transition remain enigmatic. Cap carbonates were globally deposited directly after these glaciations, but they are usually organic barren or thermally overprinted. Here we show that uniquely-preserved cap dolostones of the Araras Group contain exceptional abundances of a newly identified biomarker: 25,28-bisnorgammacerane. Its secular occurrence, carbon isotope systematics and co-occurrence with other demethylated terpenoids suggest a mechanistic connection to extensive microbial degradation of ciliate-derived biomass in bacterially dominated ecosystems. Declining 25,28-bisnorgammacerane concentrations, and a parallel rise of steranes over hopanes, indicate the transition from a bacterial to eukaryotic dominated ecosystem after the Marinoan deglaciation. Nutrient levels already increased during the Cryogenian and were a prerequisite, but not the ultimate driver for the algal rise. Intense predatory pressure by bacterivorous protists may have irrevocably cleared self-sustaining cyanobacterial ecosystems, thereby creating the ecological opportunity that allowed for the persistent rise of eukaryotic algae to global importance.


Assuntos
Clorófitas/metabolismo , Cianobactérias/metabolismo , Sedimentos Geológicos/química , Evolução Biológica , Carbonatos/análise , Carbonatos/metabolismo , Clorófitas/crescimento & desenvolvimento , Cianobactérias/crescimento & desenvolvimento , Ecossistema , Solo/química
9.
J Nat Prod ; 82(1): 163-167, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30596488

RESUMO

Five new water-soluble amido- and aminoanthraquinone pigments, hypalocrinins A-E (1-5), the new amidoanthraquinone biaryls hypalocrinin F (6) and hypalocrinin G (7), and the known compounds 6-bromoemodic acid (8), crinemodin (9), and crinemodin sulfate (10) were isolated from the deep sea crinoid Hypalocrinus naresianus collected off Japan. The structures of the compounds were elucidated by NMR spectroscopy and mass spectrometry. Amido- and aminoquinones are quite unusual among natural products. The hypalocrinins are the first naturally occurring anthraquinones and anthraquinone biaryls conjugated with taurine.


Assuntos
Antraquinonas/isolamento & purificação , Equinodermos/metabolismo , Pigmentos Biológicos/isolamento & purificação , Taurina/química , Animais , Antraquinonas/química , Pigmentos Biológicos/química
10.
Magn Reson Chem ; 56(10): 876-892, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29411898

RESUMO

Enantiodiscrimination and their quantification using nuclear magnetic resonance (NMR) spectroscopy has always been a subject of great interest. Proton is the nucleus of choice for enantiodiscrimination due to its high sensitivity and ubiquitous presence in nature. Despite its advantages, enantiodiscrimination suffers from extensive signal splitting by the proton-proton scalar couplings, which give complex multiplets that spread over a frequency range of some tens of hertz. These multiplets often overlap, further complicating interpretation of the spectra and quantifications. In the present review, we discuss some of the recent developments in the pure shift 1 H NMR based methods for enantiomer resolution and enantiodiscrimination. We also compare various pure shift methods used for enantiodiscrimination and measurement of enantiomeric excess, considering the fact that conventional 1 H NMR fails to provide any detailed insight.

11.
Magn Reson Chem ; 55(6): 553-558, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27813168

RESUMO

The small chemical shift dispersion and complex multiplicity pattern in proton NMR limit quantifications, for instance the determination of enantiomeric excess (ee) for an enantiomeric mixture. Herein, we present a simple proton-proton correlation experiment with band selective homonuclear (BASH) decoupling in both F1 and F2 dimensions, for the removal of scalar and residual dipolar couplings to provide collapsed singlet for each chemical site. The method has been demonstrated to separate the severely overlapped spectra of enantiomers using both chiral isotropic and anisotropic phases as well as a small biomolecule, particularly for the diastereotopic protons and also for the determination of ee. Copyright © 2016 John Wiley & Sons, Ltd.

12.
J Am Chem Soc ; 138(30): 9548-56, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27294984

RESUMO

Determination of relative configuration is frequently a rate-limiting step in the characterization of small organic molecules. Solution NMR-based nuclear Overhauser effect and scalar J-coupling constants can provide useful spatial information but often fail when stereocenters are separated by more than 4-5 Å. Residual dipolar couplings (RDCs) can provide a means of assigning relative configuration without limits of distance between stereocenters. However, sensitivity limits their application. Chemical shift is the most readily measured NMR parameter, and partial molecular alignment can reveal the anisotropic component of the chemical shift tensor, manifested as residual chemical shift anisotropy (RCSA). Hence, (13)C RCSAs provide information on the relative orientations of specific structural moieties including nonprotonated carbons and can be used for stereochemical assignment. Herein, we present two robust and sensitive methods to accurately measure and apply (13)C RCSAs for stereochemical assignment. The complementary techniques are demonstrated with five molecules representing differing structural classes.

13.
Angew Chem Int Ed Engl ; 54(43): 12706-10, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26359945

RESUMO

Together with NOE and J coupling, one-bond residual dipolar coupling (RDC), which reports on the three-dimensional orientation of an internuclear vector in the molecular frame, plays an important role in the conformation and configuration analysis of small molecules in solution by NMR spectroscopy. When the molecule has few C-H bonds, or too many bonds are in parallel, the available RDCs may not be sufficient to obtain the alignment tensor used for structure elucidation. Long-range RDCs that connect nuclei over multiple bonds are normally not parallel to the single bonds and therefore complement one-bond RDCs. Herein we present a method for extracting the long-range RDC of a chosen proton or group of protons to all remotely connected carbon atoms, including non-protonated carbon atoms. Alignment tensors fitted directly to the total long-range couplings (T=J+D) enabled straightforward analysis of both the long-range and one-bond RDCs for strychnine.


Assuntos
Convulsivantes/química , Espectroscopia de Ressonância Magnética/métodos , Estricnina/química , Algoritmos , Conformação Molecular , Prótons
14.
Chemphyschem ; 13(3): 645-60, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22302693

RESUMO

The use of long-range heteronuclear couplings, in association with (1)H-(1)H scalar couplings and NOE restraints, has acquired growing importance for the determination of the relative stereochemistry, and structural and conformational information of organic and biological molecules. However, the routine use of such couplings is hindered by the inherent difficulties in their measurement. Prior to the advancement in experimental techniques, both long-range homo- and heteronuclear scalar couplings were not easily accessible, especially for very large molecules. The development of a large number of multidimensional NMR experimental methodologies has alleviated the complications associated with the measurement of couplings of smaller strengths. Subsequent application of these methods and the utilization of determined J-couplings for structure calculations have revolutionized this area of research. Problems in organic, inorganic and biophysical chemistry have also been solved by utilizing the short- and long-range heteronuclear couplings. In this minireview, we discuss the advantages and limitations of a number of experimental techniques reported in recent times for the measurement of long-range heteronuclear couplings and a few selected applications of such couplings. This includes the study of medium- to larger-sized molecules in a variety of applications, especially in the study of hydrogen bonding in biological systems. The utilization of these couplings in conjunction with theoretical calculations to arrive at conclusions on the hyperconjugation, configurational analysis and the effect of the electronegativity of the substituents is also discussed.

15.
J Phys Chem B ; 115(21): 6868-75, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21557597

RESUMO

We report the C-HETSERF experiment for determination of long- and short-range homo- and heteronuclear scalar couplings ((n)J(HH) and (n)J(XH), n ≥ 1) of organic molecules with a low sensitivity dilute heteronucleus in natural abundance. The method finds significant advantage in measurement of relative signs of long-range heteronuclear total couplings in chiral organic liquid crystal. The advantage of the method is demonstrated for the measurement of residual dipolar couplings (RDCs) in enantiomers oriented in the chiral liquid crystal with a focus to unambiguously assign R/S designation in a 2D spectrum. The alignment tensor calculated from the experimental RDCs and with the computed structures of enantiomers obtained by DFT calculations provides the size of the back-calculated RDCs. Smaller root-mean-square deviations (rmsd) between experimental and calculated RDCs indicate better agreement with the input structure and its correct designation of the stereogenic center.

16.
J Magn Reson ; 207(2): 190-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20875763

RESUMO

We report a single (13)C spin edited selective proton-proton correlation experiment to decipher overcrowded (13)C coupled proton NMR spectra of weakly dipolar coupled spin systems. The experiment unravels the masked (13)C satellites in proton spectrum and permits the measurement of one bond carbon-proton residual dipolar couplings in I(3)S and for each diastereotopic proton in I(2)S groups. It also provides all the possible homonuclear proton-proton residual couplings which are otherwise difficult to extract from the broad and featureless one dimensional (1)H spectrum, in addition to enantiodifferentiation in a chiral molecule. Employment of heteronuclear ((13)C) decoupling in the evolution period results in complete demixing of overlapped signals from enantiomers. The observed anomalous intensity pattern in strongly dipolar coupled methyl protons in methyl selective correlation experiment has been interpreted using polarization operator formalism.


Assuntos
Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Estereoisomerismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Algoritmos , Anisotropia , Radioisótopos de Carbono , Clorofórmio/química , Hidrogênio/química , Metilação , Propano/análogos & derivados , Propano/química , Propano/isolamento & purificação , Propionatos/química , Propionatos/isolamento & purificação , Prótons , Solventes
17.
J Magn Reson ; 202(1): 34-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19854084

RESUMO

One-dimensional (1D) proton NMR spectra of enantiomers are generally undecipherable in chiral orienting poly-gamma-benzyl-L-glutamate (PBLG)/CDCl(3) solvent. This arises due to large number of couplings, in addition to superposition of spectra from both the enantiomers, severely hindering the (1)H detection. On the other hand in the present study the benefit is derived from the presence of several couplings among the entire network of interacting protons. Transition selective 1D (1)H-(1)H correlation experiment (1D-COSY) which utilizes the coupling assisted transfer of magnetization not only for unraveling the overlap but also for the selective detection of enantiopure spectrum is reported. The experiment is simple, easy to implement and provides accurate eanantiomeric excess in addition to the determination of the proton-proton couplings of an enantiomer within a short experimental time (few minutes).


Assuntos
Algoritmos , Cristais Líquidos/química , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Solventes/química , Isomerismo , Prótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
J Magn Reson ; 200(1): 101-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19581115

RESUMO

The routine use of proton NMR for the visualization of enantiomers, aligned in the chiral liquid crystal solvent poly-gamma-benzyl-l-glutamate (PBLG), is restricted due to severe loss of resolution arising from large number of pair wise interaction of nuclear spins. In the present study, we have designed two experimental techniques for their visualization utilizing the natural abundance (13)C edited selective refocusing of single quantum (CH-SERF) and double quantum (CH-DQSERF) coherences. The methods achieve chiral discrimination and aid in the simultaneous determination of homonuclear couplings between active and passive spins and heteronuclear couplings between the excited protons and the participating (13)C spin. The CH-SERF also overcomes the problem of overlap of central transitions of the methyl selective refocusing (SERF) experiment resulting in better chiral discrimination. Theoretical description of the evolution of magnetization in both the sequences has been discussed using polarization operator formalism.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Estereoisomerismo , Alcinos/química , Butanóis/química , Isótopos de Carbono , Cristais Líquidos , Conformação Molecular , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/química , Propano/análogos & derivados , Propano/química , Propionatos/química , Teoria Quântica , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA