Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Chem ; 57(9): 749-756, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31240742

RESUMO

Today, in the presence of global warming, understanding how plants respond to drought stress is essential to meet the challenge of developing new cultivars and new irrigation strategies, consistent with the maintenance of crop productivity. In this context, the study of the relation between plants and water is of central interest for modeling their responses to biotic and abiotic constraints. Paradoxically, there are very few direct and noninvasive methods to quantify and measure the level and the flow of water in plants. The present work aims to develop a noninvasive methodology for living plant based on nuclear magnetic resonance (NMR) at low magnetic field and imaging (MRI) to tackle the issue of water quantity in plants. For this purpose, a portable NMR device measuring the signal level at 8 mT was built. This instrument addresses specific challenges such as miniaturization, accessibility, and overheating in order to maintain the plant intact of time over long period. Time dependence of the water content in sorghum plants is reported under abiotic stress as well as the fraction of transpirable soil water and the photosynthesis activity through the leaves. At high magnetic field (9.4 T), T2 maps were acquired on the same sorghum plants at two time points. The combination of these approaches allows us to identify ecophysiological biomarkers of drought stress. One particular interesting result concerns the spatial distribution of water in two anatomically contrasted sorghum genotypes.

2.
PLoS One ; 13(3): e0194845, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29596455

RESUMO

The climate warming implies an increase of stress of plants (drought and torrential rainfall). The understanding of plant behavior, in this context, takes a major importance and sap flow measurement in plants remains a key issue for plant understanding. Magnetic Resonance Imaging (MRI) which is well known to be a powerful tool to access water quantity can be used to measure moving water. We describe a novel flow-MRI method which takes advantage of inflow slice sensitivity. The method involves the slice selectivity in the context of multi slice spin echo sequence. Two sequences such as a given slice is consecutively inflow and outflow sensitive are performed, offering the possiblility to perform slow flow sensitive imaging in a quite straigthforward way. The method potential is demonstrated by imaging both a slow flow measurement on a test bench (as low as 10 µm.s-1) and the Poiseuille's profile of xylemian sap flow velocity in the xylematic tissues of a tomato plant stem.


Assuntos
Imageamento por Ressonância Magnética , Solanum lycopersicum/metabolismo , Mudança Climática , Solanum lycopersicum/fisiologia , Estresse Fisiológico , Água/metabolismo
3.
PLoS One ; 11(1): e0144483, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26751800

RESUMO

Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Capacitância Elétrica , Eletrodos , Campos Eletromagnéticos , Espectroscopia de Ressonância Magnética/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA