Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Eur J Pain ; 26(6): 1304-1321, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35388574

RESUMO

BACKGROUND: P2X7 receptor antagonists have potential for treating various central nervous system (CNS) diseases, including neuropathic pain, although none have been approved for clinical use. Reasons may include insufficient understanding of P2X7 receptor signalling in pain, and the lack of a corresponding preclinical mechanistic biomarker. METHODS: Lu AF27139 is a highly selective and potent small molecule antagonist at rat, mouse and human forms of the P2X7 receptor, with excellent pharmacokinetic and CNS permeability properties. In the current experiments, we probed the utility of previously characterized and novel signalling cascades exposed to Lu AF27139 using cultured microglia combined with release assays. Subsequently, we assessed the biomarker potential of identified candidate molecules in the rat chronic constriction injury (CCI) model of neuropathic pain; study design limitations precluded their assessment in spared nerve injury (SNI) rats. RESULTS: Lu AF27139 blocked several pain-relevant pathways downstream of P2X7 receptors in vitro. At brain and spinal cord receptor occupancy levels capable of functionally blocking P2X7 receptors, it diminished neuropathic hypersensitivity in SNI rats, and less potently in CCI rats. Although tissue levels of numerous molecules previously linked to neuropathic pain and P2X7 receptor function (e.g. IL-6, IL-1ß, cathepsin-S, 2-AG) were unaffected by CCI, Lu AF27139-mediated regulation of spinal PGE2 and miRNA (e.g. rno-miR-93-5p) levels increased by CCI aligned with its ability to diminish neuropathic hypersensitivity. CONCLUSIONS: We have identified a pain-relevant P2X7 receptor-regulated mechanism in neuropathic rats, which could hold promise as a translatable biomarker and by association enhance the clinical progression of P2X7 receptor antagonists in neuropathic pain. SIGNIFICANCE: Sub-optimal translation of preclinical molecules has hindered the clinical development of novel mechanism of action analgesics. We have undertaken a comprehensive in vitro analysis of migroglial signalling mechanisms recruited upon P2X7 receptor activation, a number of which were shown to be modulated by a selective P2X7 receptor antagonist in a well characterized animal model of neuropathic pain. Subject to further confirmation in other neuropathic models, this opens up the possibility to investigate their clinical utility as potential pain biomarkers in patients.


Assuntos
Hipersensibilidade , MicroRNAs , Neuralgia , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X7 , Animais , Hipersensibilidade/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Neuralgia/metabolismo , Prostaglandinas/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/metabolismo , Medula Espinal/metabolismo
2.
J Med Chem ; 64(8): 4891-4902, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33822617

RESUMO

There remains an insufficient number of P2X7 receptor antagonists with adequate rodent potency, CNS permeability, and pharmacokinetic properties from which to evaluate CNS disease hypotheses preclinically. Herein, we describe the molecular pharmacology, safety, pharmacokinetics, and functional CNS target engagement of Lu AF27139, a novel rodent-active and CNS-penetrant P2X7 receptor antagonist. Lu AF27139 is highly selective and potent against rat, mouse, and human forms of the receptors. The rat pharmacokinetic profile is favorable with high oral bioavailability, modest clearance (0.79 L/(h kg)), and good CNS permeability. In vivo mouse CNS microdialysis studies of lipopolysaccharide (LPS)-primed and 2'(3')-O-(benzoylbenzoyl)adenosine-5'-triphosphate (BzATP)-induced IL-1ß release demonstrate functional CNS target engagement. Importantly, Lu AF27139 was without effect in standard in vitro and in vivo toxicity studies. Based on these properties, we believe Lu AF27139 will be a valuable tool for probing the role of the P2X7 receptor in rodent models of CNS diseases.


Assuntos
Sistema Nervoso Central/metabolismo , Antagonistas do Receptor Purinérgico P2X/síntese química , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Linhagem Celular , Sistema Nervoso Central/efeitos dos fármacos , Cães , Feminino , Meia-Vida , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microssomos Hepáticos/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Antagonistas do Receptor Purinérgico P2X/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/química
3.
Eur J Pharmacol ; 795: 1-7, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27876619

RESUMO

Neuropathic pain is a debilitating, chronic condition with a significant unmet need for effective treatment options. Recent studies have demonstrated that in addition to neurons, non-neuronal cells such as microglia contribute to the initiation and maintenance of allodynia in rodent models of neuropathic pain. The Ca2+- activated K+ channel, KCa3.1 is critical for the activation of immune cells, including the CNS-resident microglia. In order to evaluate the role of KCa3.1 in the maintenance of mechanical allodynia following peripheral nerve injury, we used senicapoc, a stable and highly potent KCa3.1 inhibitor. In primary cultured microglia, senicapoc inhibited microglial nitric oxide and IL-1ß release. In vivo, senicapoc showed high CNS penetrance and when administered to rats with peripheral nerve injury, it significantly reversed tactile allodynia similar to the standard of care, gabapentin. In contrast to gabapentin, senicapoc achieved efficacy without any overt impact on locomotor activity. Together, the data demonstrate that the KCa3.1 inhibitor senicapoc is effective at reducing mechanical hypersensitivity in a rodent model of peripheral nerve injury.


Assuntos
Acetamidas/farmacologia , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Traumatismos dos Nervos Periféricos/complicações , Bloqueadores dos Canais de Potássio/farmacologia , Compostos de Tritil/farmacologia , Acetamidas/efeitos adversos , Acetamidas/farmacocinética , Acetamidas/uso terapêutico , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Locomoção/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/efeitos adversos , Bloqueadores dos Canais de Potássio/farmacocinética , Bloqueadores dos Canais de Potássio/uso terapêutico , Ratos , Compostos de Tritil/efeitos adversos , Compostos de Tritil/farmacocinética , Compostos de Tritil/uso terapêutico
4.
Neuropharmacology ; 56(5): 915-21, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19371582

RESUMO

Deficits in N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission may underlie dopaminergic hyperactivity in schizophrenia. Dysregulation of the GABAergic system has also been implicated. In this study we investigated a role for GABA(B) receptors as an intermediate step in the pathway leading from NMDAR stimulation to DA regulation. Since glycine (GLY) has been found to ameliorate treatment resistant negative symptoms in schizophrenia, we treated a group of rats with 16% GLY food for 2 weeks. DA levels in prefrontal cortex (PFC) and striatum (STR) were assessed by dual-probe microdialysis and HPLC-EC in freely moving rats. Infusion of the GABA(B) receptor agonists SKF97541 and baclofen into PFC and STR significantly reduced basal DA, an effect that was reversed by the antagonist, CGP52432. In PFC, GABA(B) agonists also reduced AMPH-induced DA release following treatment with either 1 or 5 mg/kg AMPH. Similar effects were seen following subchronic glycine treatment in the absence, but not presence of CGP52432 during 5 mg/kg AMPH treatment. In STR SKF97541 decreased only the 1 mg/kg AMPH-induced DA release. Subchronic GLY treatment in STR leads to a significant reduction in basal DA levels, but did not affect AMPH (5 mg/kg)-induced release. Our findings support a model in which NMDA/glycine-site agonists modulate DA release in part through presynaptic GABA(B) receptors on DA terminals, with both GABA(B) ligands and GLY significantly modulating AMPH-induced DA release. Both sites, therefore, may represent appropriate targets for drug development in schizophrenia and substance abuse disorders.


Assuntos
Dopamina/metabolismo , Espaço Extracelular/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de GABA-B/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Corpo Estriado/metabolismo , Agonistas dos Receptores de GABA-B , Antagonistas de Receptores de GABA-B , Ligantes , Masculino , Microdiálise , Compostos Organofosforados/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas , Tiazóis/farmacologia , Tiossemicarbazonas/farmacologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA