Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 952: 175679, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39218092

RESUMO

Juvenile fish are known to be the most impacted during hydropeaking events due to stranding or uncontrolled drift resulting from changes to water depth and flow velocity. To shed light on their response to such hydraulic alterations, we coupled flume experiments with image-based fish tracking and quantified the fine-scale movement behavior of wild (n = 30) and hatchery-reared (n = 38) brown trout (Salmo trutta) parr. We exposed fish to two distinct hydropeaking treatments in a laterally inclined (14 %) flume section stocked with real cobbles to create refuge and heterogeneous hydraulic conditions. Fish were individually acclimated (20 min) to baseflow (Q = 1.6 L s-1) and then exposed to three consecutive hydropeaking events, reaching peakflows tenfold larger than baseflow (Q = 16 L s-1). We found that, within just minutes, fish exhibited fine-scale movement responses to cope with the change of hydrodynamic conditions. Fish moved perpendicular to the main flow direction to shallow areas as these became submerged during discharge increase, holding position at low velocity zones. This resulted in a significant difference (p < 0.001) in lateral occupancy of the experimental section between baseflow and peakflow. During peakflow, fish occupied specific positions around cobbles and exhibited swimming behaviors, including bow-riding and entraining, that allowed them to hold position while likely minimizing energy expenditure. As a result, swimming distance reduced 60-70 % compared to baseflow. During the decrease in discharge following peakflow, fish abandoned areas falling dry by moving laterally. In the treatment with the larger down-ramping rate, the time to initiate relocation was lower while the relocation speed was higher. This study shows that, for the conditions investigated here, brown trout parr is capable of swiftly deploying multiple behavioral responses to navigate rapid changes in hydrodynamic conditions. These findings can be incorporated into habitat modeling and improve our capacity to inform hydropeaking mitigation efforts.


Assuntos
Truta , Movimentos da Água , Animais , Truta/fisiologia , Natação/fisiologia , Hidrodinâmica
2.
Proc Natl Acad Sci U S A ; 121(11): e2311798121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442164

RESUMO

An unstable density stratification between two fluids mixes spontaneously under the effect of gravity, a phenomenon known as Rayleigh-Taylor (RT) turbulence. If the two fluids are immiscible, for example, oil and water, surface tension prevents intermixing at the molecular level. However, turbulence fragments one fluid into the other, generating an emulsion in which the typical droplet size decreases over time as a result of the competition between the rising kinetic energy and the surface energy density. Even though the first phenomenological theory describing this emulsification process was derived many years ago, it has remained elusive to experimental verification, hampering our ability to predict the fate of oil in applications such as deep-water spills. Here, we provide the first experimental and numerical verification of the immiscible RT turbulence theory, unveiling a unique turbulent state that originates at the oil-water interface due to the interaction of multiple capillary waves. We show that a single, non-dimensional, and time-independent parameter controls the range of validity of the theory. Our findings have wide-ranging implications for the understanding of the mixing of immiscible fluids. This includes in particular oil spills, where our work enables the prediction of the oil-water interface dynamics that ultimately determine the rate of oil biodegradation by marine bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA