Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Infect Dis Ther ; 13(8): 1861-1876, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961047

RESUMO

INTRODUCTION: This study aimed to assess the effects of a monoclonal antibody (mAb) combination on symptoms, daily function, and overall health-related quality of life. METHODS: We analyzed patient-reported outcomes data from symptomatic outpatients in a phase 1/2/3 trial. Patients with confirmed SARS-CoV-2 infection and ≥ 1 risk factor for severe COVID-19 received mAb treatment (casirivimab plus imdevimab 1200 mg) or placebo. Prespecified exploratory assessments included time to sustained symptoms resolution, usual health, and return to usual activities (assessed daily for 29 days). The trial was conducted from September 2020 to February 2021, prior to widespread COVID-19 vaccination programs and Omicron-lineage variants against which casirivimab + imdevimab is not active. RESULTS: In this analysis 736 outpatients received mAb and 1341 received placebo. Median time to sustained symptoms resolution was consistently shorter with mAb versus placebo (≥ 2 consecutive days: 14 vs 17 days, [nominal p = 0.0017]; ≥ 3 consecutive days: 17 vs 21 days, [nominal p = 0.0046]). Median time to sustained return to usual health and usual activities were both consistently shorter with mAb versus placebo (≥ 2 consecutive days: 12 vs 15 days [nominal p = 0.0001] and 9 vs 11 days [nominal p = 0.0001], respectively; ≥ 3 consecutive days: 14 vs 18 days [nominal p = 0.0003] and 10 vs 13 days [nominal p = 0.0041], respectively). CONCLUSIONS: mAb treatment against susceptible SARS-CoV-2 strains improved how patients feel and function, as evidenced by shortened time to sustained symptoms resolution and return to usual health and activities. Future studies are warranted to assess the patient experience with next generation mAbs. CLINICALTRIALS: GOV: Registration number, NCT04425629; Submission date June 11, 2020.

2.
Int J Cancer ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38938062

RESUMO

Prognosis of glioblastoma patients is still poor despite multimodal therapy. The highly brain-infiltrating growth in concert with a pronounced therapy resistance particularly of mesenchymal glioblastoma stem-like cells (GSCs) has been proposed to contribute to therapy failure. Recently, we have shown that a mesenchymal-to-proneural mRNA signature of patient derived GSC-enriched (pGSC) cultures associates with in vitro radioresistance and gel invasion. Importantly, this pGSC mRNA signature is prognostic for patients' tumor recurrence pattern and overall survival. Two mesenchymal markers of the mRNA signature encode for IKCa and BKCa Ca2+-activated K+ channels. Therefore, we analyzed here the effect of IKCa- and BKCa-targeting concomitant to (fractionated) irradiation on radioresistance and glioblastoma spreading in pGSC cultures and in pGSC-derived orthotopic xenograft glioma mouse models. To this end, in vitro gel invasion, clonogenic survival, in vitro and in vivo residual DNA double strand breaks (DSBs), tumor growth, and brain invasion were assessed in the dependence on tumor irradiation and K+ channel targeting. As a result, the IKCa- and BKCa-blocker TRAM-34 and paxilline, respectively, increased number of residual DSBs and (numerically) decreased clonogenic survival in some but not in all IKCa- and BKCa-expressing pGSC cultures, respectively. In addition, BKCa- but not IKCa-blockade slowed-down gel invasion in vitro. Moreover, systemic administration of TRAM-34 or paxilline concomitant to fractionated tumor irradiation increased in the xenograft model(s) residual number of DSBs and attenuated glioblastoma brain invasion and (numerically) tumor growth. We conclude, that KCa-blockade concomitant to fractionated radiotherapy might be a promising new strategy in glioblastoma therapy.

3.
Free Neuropathol ; 52024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38455669

RESUMO

Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. GBM displays excessive and unfunctional vascularization which may, among others, be a reason for its devastating prognosis. Pericytes have been identified as the major component of the irregular vessel structure in GBM. In vitro data suggest an epithelial-to-mesenchymal transition (EMT)-like activation of glioma-associated pericytes, stimulated by GBM-secreted TGF-ß, to be involved in the formation of a chaotic and dysfunctional tumor vasculature. This study investigated whether TGF-ß impacts the function of vessel associated mural cells (VAMCs) in vivo via the induction of the EMT transcription factor SLUG and whether this is associated with the development of GBM-associated vascular abnormalities. Upon preventing the TGF-ß-/SLUG-mediated EMT induction in VAMCs, the number of PDGFRß and αSMA positive cells was significantly reduced, regardless of whether TGF-ß secretion by GBM cells was blocked or whether SLUG was specifically knocked out in VAMCs. The reduced amount of PDGFRß+ or αSMA+ cells observed under those conditions correlated with a lower vessel density and fewer vascular abnormalities. Our data provide evidence that the SLUG-mediated modulation of VAMC activity is induced by GBM-secreted TGF-߬ and that activated VAMCs are key contributors in neo-angiogenic processes. We suggest that a pathologically altered activation of GA-Peris in the tumor microenvironment is responsible for the unstructured tumor vasculature. There is emerging evidence that vessel normalization alleviates tumor hypoxia, reduces tumor-associated edema and improves drug delivery. Therefore, avoiding the generation of an unstructured and non-functional tumor vasculature during tumor recurrence might be a promising treatment approach for GBM and identifies pericytes as a potential novel therapeutic target.

4.
Nat Struct Mol Biol ; 31(7): 1018-1022, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38347147

RESUMO

ARID1B is a SWI/SNF subunit frequently mutated in human Coffin-Siris syndrome (CSS) and it is necessary for proliferation of ARID1A mutant cancers. While most CSS ARID1B aberrations introduce frameshifts or stop codons, the functional consequence of missense mutations found in ARID1B is unclear. We here perform saturated mutagenesis screens on ARID1B and demonstrate that protein destabilization is the main mechanism associated with pathogenic missense mutations in patients with Coffin-Siris Syndrome.


Assuntos
Proteínas de Ligação a DNA , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Mutação de Sentido Incorreto , Estabilidade Proteica , Fatores de Transcrição , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Micrognatismo/genética , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Anormalidades Múltiplas/genética , Face/anormalidades , Pescoço/anormalidades
5.
Nat Immunol ; 25(3): 432-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409259

RESUMO

Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS.


Assuntos
Astrócitos , Esclerose Múltipla , Animais , Humanos , Camundongos , Anti-Inflamatórios , Modelos Animais de Doenças , Epigênese Genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Inflamação , Proteômica
6.
Nat Cancer ; 5(3): 481-499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233483

RESUMO

Activating mutations in GNAQ/GNA11 occur in over 90% of uveal melanomas (UMs), the most lethal melanoma subtype; however, targeting these oncogenes has proven challenging and inhibiting their downstream effectors show limited clinical efficacy. Here, we performed genome-scale CRISPR screens along with computational analyses of cancer dependency and gene expression datasets to identify the inositol-metabolizing phosphatase INPP5A as a selective dependency in GNAQ/11-mutant UM cells in vitro and in vivo. Mutant cells intrinsically produce high levels of the second messenger inositol 1,4,5 trisphosphate (IP3) that accumulate upon suppression of INPP5A, resulting in hyperactivation of IP3-receptor signaling, increased cytosolic calcium and p53-dependent apoptosis. Finally, we show that GNAQ/11-mutant UM cells and patients' tumors exhibit elevated levels of IP4, a biomarker of enhanced IP3 production; these high levels are abolished by GNAQ/11 inhibition and correlate with sensitivity to INPP5A depletion. Our findings uncover INPP5A as a synthetic lethal vulnerability and a potential therapeutic target for GNAQ/11-mutant-driven cancers.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/uso terapêutico , Mutação , Transdução de Sinais , Inositol Polifosfato 5-Fosfatases/genética
7.
Eur J Appl Physiol ; 124(4): 1201-1216, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37966510

RESUMO

PURPOSE: To investigate the influence of exercise intensity normalisation on intra- and inter-individual acute and adaptive responses to an interval training programme. METHODS: Nineteen cyclists were split in two groups differing (only) in how exercise intensity was normalised: 80% of the maximal work rate achieved in an incremental test (% W ˙ max) vs. maximal sustainable work rate in a self-paced interval training session (% W ˙ max-SP). Testing duplicates were conducted before and after an initial control phase, during the training intervention, and at the end, enabling the estimation of inter-individual variability in adaptive responses devoid of intra-individual variability. RESULTS: Due to premature exhaustion, the median training completion rate was 88.8% for the % W ˙ max group, but 100% for the % W ˙ max-SP the group. Ratings of perceived exertion and heart rates were not sensitive to how intensity was normalised, manifesting similar inter-individual variability, although intra-individual variability was minimised for the % W ˙ max-SP group. Amongst six adaptive response variables, there was evidence of individual response for only maximal oxygen uptake (standard deviation: 0.027 L·min-1·week-1) and self-paced interval training performance (standard deviation: 1.451 W·week-1). However, inter-individual variability magnitudes were similar between groups. Average adaptive responses were also similar between groups across all variables. CONCLUSIONS: To normalise completion rates of interval training, % W ˙ max-SP should be used to prescribe relative intensity. However, the variability in adaptive responses to training may not reflect how exercise intensity is normalised, underlining the complexity of the exercise dose-adaptation relationship. True inter-individual variability in adaptive responses cannot always be identified when intra-individual variability is accounted for.


Assuntos
Treinamento Intervalado de Alta Intensidade , Consumo de Oxigênio , Humanos , Consumo de Oxigênio/fisiologia , Exercício Físico/fisiologia , Teste de Esforço , Frequência Cardíaca/fisiologia
8.
Mol Cell Proteomics ; 23(1): 100683, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993104

RESUMO

Dysregulated mRNA splicing is involved in the pathogenesis of many diseases including cancer, neurodegenerative diseases, and muscular dystrophies such as myotonic dystrophy type 1 (DM1). Comprehensive assessment of dysregulated splicing on the transcriptome and proteome level has been methodologically challenging, and thus investigations have often been targeting only few genes. Here, we performed a large-scale coordinated transcriptomic and proteomic analysis to characterize a DM1 mouse model (HSALR) in comparison to wild type. Our integrative proteogenomics approach comprised gene- and splicing-level assessments for mRNAs and proteins. It recapitulated many known instances of aberrant mRNA splicing in DM1 and identified new ones. It enabled the design and targeting of splicing-specific peptides and confirmed the translation of known instances of aberrantly spliced disease-related genes (e.g., Atp2a1, Bin1, Ryr1), complemented by novel findings (Flnc and Ywhae). Comparative analysis of large-scale mRNA and protein expression data showed quantitative agreement of differentially expressed genes and splicing patterns between disease and wild type. We hence propose this work as a suitable blueprint for a robust and scalable integrative proteogenomic strategy geared toward advancing our understanding of splicing-based disorders. With such a strategy, splicing-based biomarker candidates emerge as an attractive and accessible option, as they can be efficiently asserted on the mRNA and protein level in coordinated fashion.


Assuntos
Distrofia Miotônica , Proteogenômica , Camundongos , Animais , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Processamento Alternativo/genética , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Mol Oncol ; 18(3): 528-546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115217

RESUMO

Neural stem cells (NSCs) are considered to be valuable candidates for delivering a variety of anti-cancer agents, including oncolytic viruses, to brain tumors. However, owing to the previously reported tumorigenic potential of NSC cell lines after intranasal administration (INA), here we identified the human hepatic stellate cell line LX-2 as a cell type capable of longer resistance to replication of oncolytic adenoviruses (OAVs) as a therapeutic cargo, and that is non-tumorigenic after INA. Our data show that LX-2 cells can longer withstand the OAV XVir-N-31 replication and oncolysis than NSCs. By selecting the highly migratory cell population out of LX-2, an offspring cell line with a higher and more stable capability to migrate was generated. Additionally, as a safety backup, we applied genomic herpes simplex virus thymidine kinase (HSV-TK) integration into LX-2, leading to high vulnerability to ganciclovir (GCV). Histopathological analyses confirmed the absence of neoplasia in the respiratory tracts and brains of immuno-compromised mice 3 months after INA of LX-2 cells. Our data suggest that LX-2 is a novel, robust, and safe cell line for delivering anti-cancer and other therapeutic agents to the brain.


Assuntos
Antivirais , Terapia Genética , Camundongos , Humanos , Animais , Administração Intranasal , Linhagem Celular , Sistema Nervoso Central/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo , Timidina Quinase/uso terapêutico
10.
Sci Rep ; 13(1): 20604, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996600

RESUMO

The intermediate-conductance calcium-activated potassium channel KCa3.1 has been proposed to be a new potential target for glioblastoma treatment. This study analyzed the effect of combined irradiation and KCa3.1-targeting with TRAM-34 in the syngeneic, immune-competent orthotopic SMA-560/VM/Dk glioma mouse model. Whereas neither irradiation nor TRAM-34 treatment alone meaningfully prolonged the survival of the animals, the combination significantly prolonged the survival of the mice. We found an irradiation-induced hyperinvasion of glioma cells into the brain, which was inhibited by concomitant TRAM-34 treatment. Interestingly, TRAM-34 did neither radiosensitize nor impair SMA-560's intrinsic migratory capacities in vitro. Exploratory findings hint at increased TGF-ß1 signaling after irradiation. On top, we found a marginal upregulation of MMP9 mRNA, which was inhibited by TRAM-34. Last, infiltration of CD3+, CD8+ or FoxP3+ T cells was not impacted by either irradiation or KCa3.1 targeting and we found no evidence of adverse events of the combined treatment. We conclude that concomitant irradiation and TRAM-34 treatment is efficacious in this preclinical glioma model.


Assuntos
Glioblastoma , Glioma , Camundongos , Animais , Glioma/tratamento farmacológico , Glioma/radioterapia , Modelos Animais de Doenças , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética
11.
GigaByte ; 2023: gigabyte94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829656

RESUMO

Irises are perennial plants, representing a large genus with hundreds of species. While cultivated extensively for their ornamental value, commercial interest in irises lies in the secondary metabolites present in their rhizomes. The Dalmatian Iris (Iris pallida Lam.) is an ornamental plant that also produces secondary metabolites with potential value to the fragrance and pharmaceutical industries. In addition to providing base notes for the fragrance industry, iris tissues and extracts possess antioxidant, anti-inflammatory and immunomodulatory effects. However, study of these secondary metabolites has been hampered by a lack of genomic information, requiring difficult extraction and analysis techniques. Here, we report the genome sequence of Iris pallida Lam., generated with Pacific Bioscience long-read sequencing, resulting in a 10.04-Gbp assembly with a scaffold N50 of 14.34 Mbp and 91.8% complete BUSCOs. This reference genome will allow researchers to study the biosynthesis of these secondary metabolites in much greater detail, opening new avenues of investigation for drug discovery and fragrance formulations.

12.
Cancers (Basel) ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894279

RESUMO

A glioblastoma (GBM) is an aggressive and lethal primary brain tumor with restricted treatment options and a dismal prognosis. Oncolytic virotherapy (OVT) has developed as a promising approach for GBM treatment. However, reaching invasive GBM cells may be hindered by tumor-surrounding, non-neoplastic cells when the oncolytic virus (OV) is applied intratumorally. Using two xenograft GBM mouse models and immunofluorescence analyses, we investigated the intranasal delivery of the oncolytic adenovirus (OAV) XVir-N-31 via virus-loaded, optimized shuttle cells. Intranasal administration (INA) was selected due to its non-invasive nature and the potential to bypass the blood-brain barrier (BBB). Our findings demonstrate that the INA of XVir-N-31-loaded shuttle cells successfully delivered OAVs to the core tumor and invasive GBM cells, significantly prolonged the survival of the GBM-bearing mice, induced immunogenic cell death and finally reduced the tumor burden, all this highlighting the therapeutic potential of this innovative approach. Overall, this study provides compelling evidence for the effectiveness of the INA of XVir-N-31 via shuttle cells as a promising therapeutic strategy for GBM. The non-invasive nature of the INA of OV-loaded shuttle cells holds great promise for future clinical translation. However, further research is required to assess the efficacy of this approach to ultimately progress in human clinical trials.

13.
N Engl J Med ; 389(9): 820-832, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37646679

RESUMO

BACKGROUND: Sickle cell disease is caused by a defect in the ß-globin subunit of adult hemoglobin. Sickle hemoglobin polymerizes under hypoxic conditions, producing deformed red cells that hemolyze and cause vaso-occlusion that results in progressive organ damage and early death. Elevated fetal hemoglobin levels in red cells protect against complications of sickle cell disease. OTQ923, a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-edited CD34+ hematopoietic stem- and progenitor-cell (HSPC) product, has a targeted disruption of the HBG1 and HBG2 (γ-globin) gene promoters that increases fetal hemoglobin expression in red-cell progeny. METHODS: We performed a tiling CRISPR-Cas9 screen of the HBG1 and HBG2 promoters by electroporating CD34+ cells obtained from healthy donors with Cas9 complexed with one of 72 guide RNAs, and we assessed the fraction of fetal hemoglobin-immunostaining erythroblasts (F cells) in erythroid-differentiated progeny. The gRNA resulting in the highest level of F cells (gRNA-68) was selected for clinical development. We enrolled participants with severe sickle cell disease in a multicenter, phase 1-2 clinical study to assess the safety and adverse-effect profile of OTQ923. RESULTS: In preclinical experiments, CD34+ HSPCs (obtained from healthy donors and persons with sickle cell disease) edited with CRISPR-Cas9 and gRNA-68 had sustained on-target editing with no off-target mutations and produced high levels of fetal hemoglobin after in vitro differentiation or xenotransplantation into immunodeficient mice. In the study, three participants received autologous OTQ923 after myeloablative conditioning and were followed for 6 to 18 months. At the end of the follow-up period, all the participants had engraftment and stable induction of fetal hemoglobin (fetal hemoglobin as a percentage of total hemoglobin, 19.0 to 26.8%), with fetal hemoglobin broadly distributed in red cells (F cells as a percentage of red cells, 69.7 to 87.8%). Manifestations of sickle cell disease decreased during the follow-up period. CONCLUSIONS: CRISPR-Cas9 disruption of the HBG1 and HBG2 gene promoters was an effective strategy for induction of fetal hemoglobin. Infusion of autologous OTQ923 into three participants with severe sickle cell disease resulted in sustained induction of red-cell fetal hemoglobin and clinical improvement in disease severity. (Funded by Novartis Pharmaceuticals; ClinicalTrials.gov number, NCT04443907.).


Assuntos
Anemia Falciforme , Sistemas CRISPR-Cas , Eritrócitos , Hemoglobina Fetal , Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Anemia Falciforme/genética , Anemia Falciforme/terapia , Antígenos CD34 , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Hemoglobina Falciforme , Regiões Promotoras Genéticas
14.
Nat Commun ; 14(1): 3907, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400441

RESUMO

YAP is a key transcriptional co-activator of TEADs, it regulates cell growth and is frequently activated in cancer. In Malignant Pleural Mesothelioma (MPM), YAP is activated by loss-of-function mutations in upstream components of the Hippo pathway, while, in Uveal Melanoma (UM), YAP is activated in a Hippo-independent manner. To date, it is unclear if and how the different oncogenic lesions activating YAP impact its oncogenic program, which is particularly relevant for designing selective anti-cancer therapies. Here we show that, despite YAP being essential in both MPM and UM, its interaction with TEAD is unexpectedly dispensable in UM, limiting the applicability of TEAD inhibitors in this cancer type. Systematic functional interrogation of YAP regulatory elements in both cancer types reveals convergent regulation of broad oncogenic drivers in both MPM and UM, but also strikingly selective programs. Our work reveals unanticipated lineage-specific features of the YAP regulatory network that provide important insights to guide the design of tailored therapeutic strategies to inhibit YAP signaling across different cancer types.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP , Epigenômica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução de Sinais/genética
15.
Biomedicines ; 11(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672722

RESUMO

The blood-brain barrier (BBB) is a selectively permeable boundary that separates the circulating blood from the extracellular fluid of the brain and is an essential component for brain homeostasis. In glioblastoma (GBM), the BBB of peritumoral vessels is often disrupted. Pericytes, being important to maintaining BBB integrity, can be functionally modified by GBM cells which induce proliferation and cell motility via the TGF-ß-mediated induction of central epithelial to mesenchymal transition (EMT) factors. We demonstrate that pericytes strengthen the integrity of the BBB in primary endothelial cell/pericyte co-cultures as an in vitro BBB model, using TEER measurement of the barrier integrity. In contrast, this effect was abrogated by TGF-ß or conditioned medium from TGF-ß secreting GBM cells, leading to the disruption of a so far intact and tight BBB. TGF-ß notably changed the metabolic behavior of pericytes, by shutting down the TCA cycle, driving energy generation from oxidative phosphorylation towards glycolysis, and by modulating pathways that are necessary for the biosynthesis of molecules used for proliferation and cell division. Combined metabolomic and transcriptomic analyses further underscored that the observed functional and metabolic changes of TGF-ß-treated pericytes are closely connected with their role as important supporting cells during angiogenic processes.

16.
Cancer ; 129(1): 118-129, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308296

RESUMO

BACKGROUND: In the EMPOWER-Lung 1 trial (ClinicalTrials.gov, NCT03088540), cemiplimab conferred longer survival than platinum-doublet chemotherapy for advanced non-small cell lung cancer (NSCLC) with programmed cell death-ligand 1 (PD-L1) ≥50%. Patient-reported outcomes were evaluated among trial participants. METHODS: Adults with NSCLC and Eastern Cooperative Oncology Group performance status 0 to 1 were randomly assigned cemiplimab 350 mg every 3 weeks or platinum-doublet chemotherapy. At baseline and day 1 of each treatment cycle, patients were administered the European Organization for Research and Treatment of Cancer Quality of Life-Core 30 (QLQ-C30) and Lung Cancer Module (QLQ-LC13) questionnaires. Mixed-model repeated measures analysis estimated overall change from baseline for PD-L1 ≥50% and intention-to-treat populations. Kaplan-Meier analysis estimated time to definitive deterioration. RESULTS: In PD-L1 ≥50% patients (cemiplimab, n = 283; chemotherapy, n = 280), baseline QLQ-C30 and QLQ-LC13 scores showed moderate-to-high functioning and low symptom burden. Change from baseline favored cemiplimab on global health status/quality of life (GHS/QOL), functioning, and most symptom scales. Risk of definitive deterioration across functioning scales was reduced versus chemotherapy; hazard ratios were 0.48 (95% CI, 0.32-0.71) to 0.63 (95% CI, 0.41-0.96). Cemiplimab showed lower risk of definitive deterioration for disease-related (dyspnea, cough, pain in chest, pain in other body parts, fatigue) and treatment-related symptoms (peripheral neuropathy, alopecia, nausea/vomiting, appetite loss, constipation, diarrhea) (nominal p < .05). Results were similar in the intention-to-treat population. CONCLUSIONS: Results support cemiplimab for first-line therapy of advanced NSCLC from the patient's perspective. Improved survival is accompanied by improvements versus platinum-doublet chemotherapy in GHS/QOL and functioning and reduction in symptom burden.


Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adulto , Humanos , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Dor/etiologia , Medidas de Resultados Relatados pelo Paciente , Platina/uso terapêutico , Qualidade de Vida , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico
17.
J Invest Dermatol ; 143(2): 273-283.e12, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36116506

RESUMO

Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized by recurring suppurating lesions of the intertriginous areas, resulting in a substantial impact on patients' QOL. HS pathogenesis remains poorly understood. An autoimmune component has been proposed, but disease-specific autoantibodies, autoantigens, or autoreactive T cells have yet to be described. In this study, we identify a high prevalence of IgM, IgG, and IgA antibodies directed against Nε-carboxyethyl lysine (CEL), a methylglyoxal-induced advanced glycation end-product, in the sera of patients with HS. Titers of anti-CEL IgG and IgA antibodies were highly elevated in HS compared with those in healthy controls and individuals with other inflammatory skin diseases. Strikingly, the majority of anti-CEL IgG was of the IgG2 subclass and correlated independently with both disease severity and duration. Both CEL and anti-CEL‒producing plasmablasts could be isolated directly from HS skin lesions, further confirming the disease relevance of this autoimmune response. Our data point to an aberration of the methylglyoxal pathway in HS and support an autoimmune axis in the pathogenesis of this debilitating disease.


Assuntos
Hidradenite Supurativa , Humanos , Autoanticorpos , Lisina , Qualidade de Vida , Aldeído Pirúvico , Imunoglobulina G
18.
Cancers (Basel) ; 14(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36551685

RESUMO

Reportedly, the intermediate-conductance Ca2+-activated potassium channel KCa3.1 contributes to the invasion of glioma cells into healthy brain tissue and resistance to temozolomide and ionizing radiation. Therefore, KCa3.1 has been proposed as a potential target in glioma therapy. The aim of the present study was to assess the variability of the temozolomide- and radiation-sensitizing effects conferred by the KCa3.1 blocking agent TRAM-34 between five different glioma cell lines grown as differentiated bulk tumor cells or under glioma stem cell-enriching conditions. As a result, cultures grown under stem cell-enriching conditions exhibited indeed higher abundances of mRNAs encoding for stem cell markers compared to differentiated bulk tumor cultures. In addition, stem cell enrichment was paralleled by an increased resistance to ionizing radiation in three out of the five glioma cell lines tested. Finally, TRAM-34 led to inconsistent results regarding its tumoricidal but also temozolomide- and radiation-sensitizing effects, which were dependent on both cell line and culture condition. In conclusion, these findings underscore the importance of testing new drug interventions in multiple cell lines and different culture conditions to partially mimic the in vivo inter- and intra-tumor heterogeneity.

19.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077380

RESUMO

Glioblastoma (GBM) is an obligatory lethal brain tumor with a median survival, even with the best standard of care therapy, of less than 20 months. In light of this fact, the evaluation of new GBM treatment approaches such as oncolytic virotherapy (OVT) is urgently needed. Based on our preliminary preclinical data, the YB-1 dependent oncolytic adenovirus (OAV) XVir-N-31 represents a promising therapeutic agent to treat, in particular, therapy resistant GBM. Preclinical studies have shown that XVir-N-31 prolonged the survival of GBM bearing mice. Now using an immunohumanized mouse model, we examined the immunostimulatory effects of XVir-N-31 in comparison to the wildtype adenovirus (Ad-WT). Additionally, we combined OVT with the inhibition of immune checkpoint proteins by using XVir-N-31 in combination with nivolumab, or by using a derivate of XVir-N-31 that expresses a PD-L1 neutralizing antibody. Although in vitro cell killing was higher for Ad-WT, XVir-N-31 induced a much stronger immunogenic cell death that was further elevated by blocking PD-1 or PD-L1. In vivo, an intratumoral injection of XVir-N-31 increased tumor infiltrating lymphocytes (TILs) and NK cells significantly more than Ad-WT not only in the virus-injected tumors, but also in the untreated tumors growing in the contralateral hemisphere. This suggests that for an effective treatment of GBM, immune activating properties by OAVs seem to be of greater importance than their oncolytic capacity. Furthermore, the addition of immune checkpoint inhibition (ICI) to OVT further induced lymphocyte infiltration. Consequently, a significant reduction in contralateral non-virus-injected tumors was only visible if OVT was combined with ICI. This strongly indicates that for an effective eradication of GBM cells that cannot be directly targeted by an intratumoral OV injection, additional ICI therapy is required.


Assuntos
Glioblastoma , Terapia Viral Oncolítica , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioblastoma/metabolismo , Camundongos , Receptor de Morte Celular Programada 1
20.
Cell Rep ; 39(9): 110883, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649351

RESUMO

TREM2 is a transmembrane protein expressed exclusively in microglia in the brain that regulates inflammatory responses to pathological conditions. Proteolytic cleavage of membrane TREM2 affects microglial function and is associated with Alzheimer's disease, but the consequence of reduced TREM2 proteolytic cleavage has not been determined. Here, we generate a transgenic mouse model of reduced Trem2 shedding (Trem2-Ile-Pro-Asp [IPD]) through amino-acid substitution of an ADAM-protease recognition site. We show that Trem2-IPD mice display increased Trem2 cell-surface-receptor load, survival, and function in myeloid cells. Using single-cell transcriptomic profiling of mouse cortex, we show that sustained Trem2 stabilization induces a shift of fate in microglial maturation and accelerates microglial responses to Aß pathology in a mouse model of Alzheimer's disease. Our data indicate that reduction of Trem2 proteolytic cleavage aggravates neuroinflammation during the course of Alzheimer's disease pathology, suggesting that TREM2 shedding is a critical regulator of microglial activity in pathological states.


Assuntos
Doença de Alzheimer , Glicoproteínas de Membrana , Microglia , Receptores Imunológicos , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA