Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Pollut ; 356: 124234, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815892

RESUMO

Per- and poly-fluoroalkyl substances (PFASs) are contaminants of emerging concern, yet the understanding of factors that control their leaching and release from contaminated soils remains limited. This study aimed to investigate the impact of dissolved organic carbon (DOC) on the release of PFASs-specifically, perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), and perfluorooctanoic acid (PFOA)from soils contaminated by aqueous film forming foam (AFFF). Batch aqueous leaching experiments were conducted on AFFF-contaminated soils under alkaline solution conditions (pH 9.5, 10.5, and 12) as it enhances leaching of both PFAS and DOC. Leaching of PFOS was significantly increased under alkaline conditions. Although the leaching of PFAS generally increased with pH, PFOS appeared to be more retained under the very alkaline pH conditions used in this study. At the same solution pH, leaching of PFOS and DOC was less in Ca(OH)2 than in NaOH. The retention of PFOS under these conditions may be attributable to the shielding of the negative charge of the soil components and colloids (e.g., DOC and clay minerals) in the leachates and/or the screening of negative charges on head groups of PFOS due to the high concentration of divalent cations. Solution chemistry affected desorption of PFOS more than PFHxS and PFOA. The study highlights that the influence of DOC on PFAS leaching and transport can be very complex, and depends on leachate chemistry (e.g., pH and cation type), PFAS chemistry, the magnitude of PFAS contamination and factors that influence the solid:liquid partitioning of organic carbon in soil.

2.
Sci Total Environ ; 905: 167188, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734606

RESUMO

Understanding the sorption behavior of per- and poly-fluoroalkyl substances (PFAS) in soils are essential for assessing their mobility and risk in the environment. Heavy metals often coexist with PFAS depending on the source and history of contamination. In this study, we investigated the effect of heavy metal co-contaminants (Pb2+, Cu2+ and Zn2+) on the sorption of 13 anionic PFAS with different perfluorocarbon chain length (C3-C9) in two soils with different properties. Results revealed that Pb2+, Cu2+ and Zn2+ had little effect on the sorption of most short-chain compounds, while the presence of these heavy metals enhanced the sorption of long-chain PFAS in two soils. The distribution coefficients (Kd) of several long-chain PFAS linearly increased with increasing concentrations of heavy metal, especially in the presence of Pb2+ (ΔKd/Δ [Pb2+] > 3 for PFOS and PFNA vs <1 for PFPeS and PFHxS). While several mechanisms may have contributed to the enhancement of sorption of PFAS, the heavy metals most likely contributed through enhanced hydrophobic interactions of PFAS by neutralizing the negative charge of adsorption surfaces in soils and thus making it more favorable for their partitioning onto the solid phase. Moreover, the increase in the concentrations of heavy metals led to a decrease in the pH of the system and promoted sorption of long-chain compounds, especially in soil with lower organic carbon content. Overall, this study provides evidence that the presence of co-existing heavy metal cations in soils can significantly enhance the sorption of long-chain PFAS onto soil, thereby potentially limiting their mobility in the environment.

3.
Sci Total Environ ; 875: 162653, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36894096

RESUMO

Removal of per- and polyfluoroalkyl substances (PFASs) from water or their immobilization in soil using carbon-based sorbents is one of the cost-effective techniques. Considering the variety of carbon-based sorbents, identifying the key sorbent properties responsible for PFASs removal from solution or immobilization in the soil can assist in the selection of the best sorbents for management of contaminated sites. This study evaluated the performance of 28 carbon-based sorbents including granular and powdered activated carbon (GAC and PAC), mixed mode carbon mineral material, biochars, and graphene-based materials (GNBs). The sorbents were characterized for a range of physical and chemical properties. PFASs' sorption from an AFFF-spiked solution was examined via a batch experiment, while their ability to immobilize PFASs in soil was tested following mixing, incubation and extraction using the Australian Standard Leaching Procedure. Both soil and solution were treated with 1 % w/w sorbents. Comparing different carbon-based materials, PAC, mixed mode carbon mineral material and GAC were the most effective in sorbing PFASs in both solution and soil. Among the different physical characteristics measured, the sorption of long-chain and more hydrophobic PFASs in both soil and solution was best correlated with sorbent surface area measured using methylene blue, which highlights the importance of mesopores in PFASs sorption. Iodine number was found to be a better indicator of the sorption of short-chain and more hydrophilic PFASs from solution but was found to be poorly correlated with PFASs immobilization in soil for activated carbons. Sorbents with a net positive charge performed better than those with a net negative charge, or no net charge. This study showed that surface area measured by methylene blue and surface charge are the best indicators of sorbent performance with respect to sorption/reducing leaching of PFASs. These properties may be helpful in selecting sorbents for PFASs remediation of soils/waters.

4.
Environ Pollut ; 323: 121249, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764376

RESUMO

Immobilisation/stabilisation is one of the most developed and studied approaches for treating soils contaminated with per- and poly-fluoroalkyl substances (PFAS). However, its application has been inhibited by insufficient understanding of the effectiveness of added soil sorbents over time. Herein, we present results on the effectiveness of select carbon-based sorbents, over 4 years (longevity) and multiple laboratory leaching conditions (durability). Standard batch leaching tests simulating aggressive, worst-case scenario conditions for leaching (i.e., shaking for 24-48 h at high liquid/solid ratios) were employed to test longevity and durability of stabilisation in clay-loam and sandy-loam soils historically contaminated with PFAS (2 and 14 mg/kg ∑28 PFAS). The different sorbents, which were applied at 1-6% (w/w), reduced leaching of PFAS from the soils to varying degrees. Among the 5 sorbents tested, initial assessments completed 1 week after treatment revealed that 2 powdered activated carbon (PAC) sorbents and 1 biochar were able to reduce leaching of PFAS in the soil by at least 95%. Four years after treatment, the performance of the PAC sorbents did not significantly change, whilst colloidal AC improved and was able to reduce leaching of PFAS by at least 94%. The AC-treated soils also appeared to be durable and achieved at least 95% reduction in PFAS leaching under repetitive leaching events (5 times extraction) and with minimal effect of pH (pH 4-10.5). In contrast, the biochars were affected by aging and were at least 22% less effective in reducing PFAS leaching across a range of leaching conditions. Sorbent performance was generally consistent with the sorbent's physical and chemical characteristics. Overall, the AC sorbents used in this study appeared to be better than the biochars in stabilising PFAS in the long term.


Assuntos
Fluorocarbonos , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Carvão Vegetal/química
5.
J Hazard Mater ; 445: 130441, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462244

RESUMO

This paper aims to describe the performance of a soil washing plant (SWP) for remediating a per- and poly-fluoroalkyl substances (PFASs)-contaminated soil with a high clay content (61%). The SWP used both physical and chemical processes; fractionation of the soil particles by size and partitioning of PFASs into the aqueous phase to remove PFASs from the soil. Contaminated water was treated in series with granulated activated carbon (GAC) and ion-exchange resin and reused within the SWP. Approximately 2200 t (dry weight) of PFAS-contaminated soil was treated in 25 batches of 90 t each, with a throughput of approximately 11 t soil/hr. Efficiency of the SWP was measured by observed decreases in total and leachable concentrations of PFASs in the soil. Average removal efficiencies (RE) were up to 97.1% for perfluorocarboxylic acids and 94.9% for perfluorosulfonic acids. REs varied among different PFASs depending on their chemistry (functional head group, carbon chain length) and were independent of the total PFAS concentrations in each soil batch. Mass balance analysis found approximately 90% of the PFAS mass in the soil was transferred to the wash solution and > 99.9% of the PFAS mass in the wash solution was transferred onto the GAC without any breakthrough.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Solo/química , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Argila , Poluição da Água/análise , Carvão Vegetal , Plantas
6.
Environ Sci Technol ; 56(14): 10030-10041, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35763608

RESUMO

This study investigated the mobilization of a wide range of per- and polyfluoroalkyl substances (PFASs) present in aqueous film-forming foams (AFFFs) in water-saturated soils through one-dimensional (1-D) column experiments with a view to assessing the feasibility of their remediation by soil desorption and washing. Results indicated that sorption/desorption of most of the shorter-carbon-chain PFASs (C ≤ 6) in soil reached greater than 99% rapidly─after approximately two pore volumes (PVs) and were well predicted by an equilibrium transport model, indicating that they will be readily removed by soil washing technologies. In contrast, the equilibrium model failed to predict the mobilization of longer-chain PFASs (C ≥ 7), indicating the presence of nonequilibrium sorption/desorption (confirmed by a flow interruption experiment). The actual time taken to attain 99% sorption/desorption was up to 5 times longer than predicted by the equilibrium model (e.g., ∼62 PVs versus ∼12 PVs predicted for perfluorooctane sulfonate (PFOS) in loamy sand). The increasing contribution of hydrophobic interactions over the electrostatic interactions is suggested as the main driving factor of the nonequilibrium processes. The inverse linear relationship (R2 = 0.6, p < 0.0001) between the nonequilibrium mass transfer rate coefficient and the Freundlich sorption coefficient could potentially be a useful means for preliminary evaluation of potential nonequilibrium sorption/desorption of PFASs in soils.


Assuntos
Fluorocarbonos , Poluentes do Solo , Poluentes Químicos da Água , Fluorocarbonos/análise , Solo/química , Água , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 817: 152975, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026264

RESUMO

The effect of soluble cations on sorption in soils of a range of anionic PFAS is not well studied. We investigated the role of three common cations (Na+, Ca2+, and Mg2+) at varying solution concentrations on the sorption coefficients (Kd) of 18 anionic PFAS in two contrasting soils. The effective charge of the soil suspension (Zeta potential) became less negative as the concentration of these cations increased in the soil solutions. Perfluorinated compounds showed greater sorption than polyfluorinated compounds, with sulfonates of comparable chain lengths showing higher sorption than the carboxylates. We observed that the Kd values of several PFAS in the two soils were positively correlated with the concentration of cations in solution, especially in the presence of polyvalent cations (Ca2+and Mg2+). The changes in sorption with cation concentration were more prominent for long-chain PFAS, with C > 10 PFAS being completely removed from solution at higher cation concentrations. The emerging PFAS (replacement compounds GenX and ADONA) showed negligible or little sorption (Kd < 0.6 L/kg). While several mechanisms contribute towards sorption of PFAS in the presence of cations, we conclude that the primary effect of cations is through screening of negative charges on head groups of PFAS and reorientation of molecules at the interface between organic matter surfaces and soil solution as well as charge neutralisation at soil solid surface. Screening of negative charges allows for greater hydrophobic interaction between hydrophobic tails of PFAS and soil surfaces resulting in greater sorption. Increasing cation concentrations in soil solutions could thus reduce mobility of PFAS through a soil profile.


Assuntos
Fluorocarbonos , Poluentes do Solo , Adsorção , Cátions/química , Fluorocarbonos/análise , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar , Solo/química
8.
Environ Sci Technol ; 56(1): 368-378, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34932318

RESUMO

Soil contaminated with aqueous film-forming foams (AFFFs) containing per- and polyfluoroalkyl substances (PFASs) at firefighting training sites has become a major concern worldwide. To date, most studies have focused on assessing soil-water partitioning behavior of PFASs and the key factors that can affect their sorption, whereas PFASs leaching from contaminated soils have not yet been widely investigated. This study evaluated the leaching and desorption of a wide range of PFASs from twelve contaminated soils using the Australian Standard Leaching Procedure (ASLP), the U.S. EPA Multiple Extraction Procedure (MEP), and Leaching Environmental Assessment Framework (LEAF). All three leaching tests provided a similar assessment of PFAS leaching behavior. Leaching of PFASs from soils was related to C-chain lengths and their functional head groups. While short-chain (CF2 ≤ 6) PFASs were easily desorbed and leached, long-chain PFASs were more difficult to desorb. PFASs with a carboxylate head group were leached more readily and to a greater extent than those with a sulfonate or sulfonamide head group. Leaching of long-chain PFASs was pH-dependent where leaching increased at high pH, while leaching of short-chain PFASs was less sensitive to pH. Comparing different leaching tests showed that the results using the alkaline ASLP were similar to the cumulative MEP data and the former might be more practical for routine use than the MEP. No single soil property was adequately able to describe PFAS leaching from the soils. Overall, the PFAS chemical structure appeared to have a greater effect on PFAS leaching from soil than soil physicochemical properties.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Austrália , Poluição Ambiental , Fluorocarbonos/análise , Solo/química , Poluentes Químicos da Água/análise
9.
J Hazard Mater ; 404(Pt B): 124065, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069992

RESUMO

This study investigated the potential aging and plant bioaccumulation of three perfluoroalkyl acids (PFAAs), perfluorosulphonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanesulphonic acid (PFHxS) in 20 soils over a six-month period. Sorption coefficients (Log Kd) ranged from 0.13-1.28 for PFHxS, 0.17-1.06 for PFOA and 0.98-2.03 for PFOS, respectively, and bioaccumulation factors (Log BAFs) ranged from 0.29-1.24, 0.22-1.46 and 0.05-0.65 for PFHxS, PFOA and PFOS, respectively. Over the six-month period, Kd values significantly increased for PFHxS and PFOA but the magnitude of the increase was very small and did not translate into differences in plant PFAA-concentrations between aged and freshly spiked treatments. The Kd and BAF values were modelled by multiple linear regression (MLR) to soil physico-chemical properties and by partial least squares regression to soil spectra acquired by mid-infrared spectroscopy (DRIFT-PLSR). Modelling of each PFAA was influenced by different soil properties, including organic carbon, pH, CEC, exchangeable cations (Ca2+, Mg2+, Na+ and K+) and oxalate extractable Al. BAF values were not strongly correlated to any soil property but were inversely correlated to Kd values. Our results indicate that limited aging occurred in these soils over the six-month period.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Caprilatos , Fluorocarbonos/análise , Solo
10.
Environ Sci Technol ; 54(24): 15883-15892, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249833

RESUMO

The aim of this study was to assess the soil-water partitioning behavior of a wider range of per- and polyfluoroalkyl substances (PFASs) onto soils covering diverse soil properties. The PFASs studied include perfluoroalkyl carboxylates (PFCAs), perfluoroalkane sulfonates (PFSAs), fluorotelomer sulfonates (FTSs), nonionic perfluoroalkane sulfonamides (FASAs), cyclic PFAS (PFEtCHxS), per- and polyfluoroalkyl ether acids (GenX, ADONA, 9Cl-PF3ONS), and three aqueous film-forming foam (AFFF)-related zwitterionic PFASs (AmPr-FHxSA, TAmPr-FHxSA, 6:2 FTSA-PrB). Soil-water partitioning coefficients (log Kd values) of the PFASs ranged from less than zero to approximately three, were chain-length-dependent, and were significantly linearly related to molecular weight (MW) for PFASs with MW > 350 g/mol (R2 = 0.94, p < 0.0001). Across all soils, the Kd values of all short-chain PFASs (≤5 -CF2- moieties) were similar and varied less (<0.5 log units) compared to long-chain PFASs (>0.5 to 1.5  log units) and zwitterions AmPr- and TAmPr-FHxSA (∼1.5 to 2 log units). Multiple soil properties described sorption of PFASs better than any single property. The effects of soil properties on sorption were different for anionic, nonionic, and zwitterionic PFASs. Solution pH could change both PFAS speciation and soil chemistry affecting surface complexation and electrostatic processes. The Kd values of all PFASs increased when solution pH decreased from approximately eight to three. Short-chain PFASs were less sensitive to solution pH than long-chain PFASs. The results indicate the complex interactions of PFASs with soil surfaces and the need to consider both PFAS type and soil properties to describe mobility in the environment.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Concentração de Íons de Hidrogênio , Solo , Água , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 720: 137263, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32145609

RESUMO

The sorption of three perfluoroalkyl substances (PFASs), namely perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonic acid (PFHxS), was determined in 19 coastal sediments. There are currently limited data on the sorption behaviour of these chemicals in marine or estuarine sediments and the properties controlling their sorption have not been well established. The median average PFOS Kd value (30.4 L/kg) was >8 times that for PFOA (3.3 L/kg) and PFHxS (2.8 L/kg). Highly significant (P < .001) linear relationships were found between values for sorption coefficients (Kd) for all three chemicals (PFOS, PFOA and PFHxS) to the estuarine sediments and organic carbon (OC) content with r2 values ranging from 0.87 to 0.91. The nature of the constituents of OC was determined by nuclear magnetic resonance (NMR) for a subset (10) of the sediments to assess whether the strong relationship between sorption and OC was due solely to an increasing amount of OC or to particular OC fractions. The NMR analysis could not provide strong evidence for one OC fraction type explaining the variation in sorption of the three PFASs. Further investigation using partial least squares of the whole spectra also did not show any particular OC components could explain the Kd variation. This data suggests that variation in sorption in these sediments was primarily due to the varying OC content and not its chemistry.

12.
Chemosphere ; 238: 124558, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31442772

RESUMO

Graphene-based nanomaterials (GNMs) have been touted as miracle materials due to their extraordinary properties that can benefit many industries, including in agriculture and for environmental remediation. While improvement in nutrient delivery and the ability to adsorb environmental contaminants have been demonstrated, what happens to GNMs in soil is a question that has not been addressed. The main aim of this study was to investigate their degradation in soil to have a better understanding of their environmental fate. Using radioisotope techniques, this study assessed the potential mineralisation and release of graphene oxide (GO), one of the most commonly used forms of graphene. Results revealed that the conversion of GO to carbon dioxide was negligible (<2%) in microbially-active soils. GO remaining in soil was also not readily released by water extractions. The lack of mineralisation and release is indicative of GO's high (bio)degradation stability which is likely due to its limited availability resulting from its rapid homo/hetero-aggregation. Over-all, the results provide new and important information on the environmental fate of graphene nanomaterials applied to soils.


Assuntos
Dióxido de Carbono/metabolismo , Radioisótopos de Carbono/análise , Recuperação e Remediação Ambiental , Grafite/análise , Minerais/metabolismo , Nanoestruturas/administração & dosagem , Solo/química , Adsorção , Agricultura , Grafite/química
13.
Sci Total Environ ; 686: 505-513, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185399

RESUMO

The aim of this study was to establish partitioning coefficients (Kd) of perfluorooctanoic acid (PFOA) in a wide range of soils and determine if those values can be predicted from soil properties using multiple linear regression (MLR) and from infrared spectra of soils using partial least squares regression (PLSR). For 100 different soils, the Kd values of spiked radiolabelled 14C-PFOA ranged from 0.6 to 14.8 L/kg and significantly decreased with soil depth (p < 0.05) due to soil properties that change with depth. The MLR modelling revealed that PFOA sorption was significantly (p < 0.05) influenced, in decreasing order, by organic carbon (OC) content, silt-plus-clay content and soil pH. Soils were partitioned into all soils and surface soils alone. The MLR models using OC, silt-plus-clay content and pH together explained most of the variation in sorption in all soils as well as surface soils alone (0-15 cm). However, correlations between soil properties and Kd values in some soils could not be explained by the MLR model. Modelling of Kd prediction in soils with PLSR and diffuse reflectance (mid) infrared Fourier transform spectroscopy (DRIFT) showed comparable success in explaining the predictions of Kd values, including some of the outliers identified in the MLR model. The PLSR loading weights suggested that quartz, and possibly pyrophyllite minerals, were inversely correlated with the Kd values. Given that MLR requires a-priori characterisation of a range of soil properties and PLSR-DRIFT is a method based on the direct relationship between spectra and soil components, mid-infrared spectroscopy may be a more economical and rapid technique to predict the solid-liquid partitioning of PFOA in soils.

14.
Chemosphere ; 222: 671-678, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30735967

RESUMO

Measurement and reporting of concentrations of contaminants of emerging concern such as per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA), is an integral part of most investigations. Occurrence of sorption losses of PFAS analytes onto particular laboratory-ware (e.g. glass containers) has been suggested in the published literature but has not been investigated in detail. We examined sorption losses from aqueous PFOA solutions in contact with different commonly-used materials in filter units and centrifuge tubes (glass and plastics). Sorption of PFOA onto different filter membrane types ranged from 21-79% indicating that filtration can introduce a major source of error in PFOA analysis; pre-treatment of filter membranes with phosphate or methanol solutions did not improve PFOA recovery. Substantial adsorption of PFOA was also observed on tubes made from polypropylene (PP), polystyrene (PS), polycarbonate (PC), and glass where losses observed were between 32-45%, 27-35%, 16-31% and 14-24%, respectively. Contrary to suggestions in the literature, our results indicated that the greatest sorption losses for PFOA occurred on PP, whereas losses on glass tubes were much lower. Variations in ionic strength and pH did not greatly influence PFOA recovery. When PFOA concentrations were increased, the percent recovery of PFOA increased, indicating that binding sites on tube-walls were saturable. This study draws attention towards analytical bias that can occur due to sorption losses during routine procedures, and highlights the importance of testing the suitability of chosen laboratory-ware for specific PFAS analytes of interest prior to experimental use.


Assuntos
Adsorção , Caprilatos/análise , Poluentes Ambientais/análise , Fluorocarbonos/análise , Centrifugação/instrumentação , Filtração/instrumentação , Poluentes Químicos da Água/isolamento & purificação
15.
J Agric Food Chem ; 66(26): 6480-6486, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28812885

RESUMO

Plant protection products containing nanomaterials that alter the functionality or risk profile of active ingredients (nano-enabled pesticides) promise many benefits over conventional pesticide products. These benefits may include improved formulation characteristics, easier application, better targeting of pest species, increased efficacy, lower application rates, and enhanced environmental safety. After many years of research and development, nano-enabled pesticides are starting to make their way into the market. The introduction of this technology raises a number of issues for regulators, including how does the ecological risk assessment of nano-enabled pesticide products differ from that of conventional plant protection products? In this paper, a group drawn from regulatory agencies, academia, research, and the agrochemicals industry offers a perspective on relevant considerations pertaining to the problem formulation phase of the ecological risk assessment of nano-enabled pesticides.


Assuntos
Nanoestruturas/química , Praguicidas/química , Composição de Medicamentos , Nanoestruturas/toxicidade , Praguicidas/toxicidade , Medição de Risco
16.
Environ Pollut ; 221: 293-300, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27955990

RESUMO

Fullerenes (e.g. C60, C70, etc.) present in soil may undergo changes in its retention with aging. In this study, the partitioning behavior of (14C)-C60 aged up to 12 weeks was investigated in biosolids-amended soil. Spiked samples were subjected to sequential partitioning using water, methanol, and toluene followed by total combustion of solids; the distribution of 14C across solvents and matrices were used to provide insights on C60 behavior. In most samples, 14C only partitioned in toluene with the remaining (non-extractable) activity detected in the solid phase. In all biosolids-amended soil samples, an increase in non-extractable 14C were observed for those exposed to light (vs dark) with the greatest difference observed in biosolids + sand samples. Possible processes that contribute to the observed 14C distribution, i.e. retention and potential transformation of C60, were discussed. Over-all, results suggest that environmental exposure to C60 and potentially transformed C60 species, as a result of their release from soils, is likely to be low.


Assuntos
Fulerenos/química , Poluentes do Solo/química , Solo/química , Monitoramento Ambiental , Fulerenos/análise , Modelos Químicos , Poluentes do Solo/análise
17.
PLoS One ; 11(8): e0161979, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27575719

RESUMO

Soils are a sink for sulfidised-silver nanoparticles (Ag2S-NPs), yet there are limited ecotoxicity data for their effects on microbial communities. Conventional toxicity tests typically target a single test species or function, which does not reflect the broader community response. Using a combination of quantitative PCR, 16S rRNA amplicon sequencing and species sensitivity distribution (SSD) methods, we have developed a new approach to calculate silver-based NP toxicity thresholds (HCx, hazardous concentrations) that are protective of specific members (operational taxonomic units, OTUs) of the soil microbial community. At the HC20 (80% of species protected), soil OTUs were significantly less sensitive to Ag2S-NPs compared to AgNPs and Ag+ (5.9, 1.4 and 1.4 mg Ag kg-1, respectively). However at more conservative HC values, there were no significant differences. These trends in OTU responses matched with those seen in a specific microbial function (rate of nitrification) and amoA-bacteria gene abundance. This study provides a novel molecular-based framework for quantifying the effect of a toxicant on whole soil microbial communities while still determining sensitive genera/species. Methods and results described here provide a benchmark for microbial community ecotoxicological studies and we recommend that future revisions of Soil Quality Guidelines for AgNPs and other such toxicants consider this approach.


Assuntos
Bactérias/efeitos dos fármacos , Metagenoma , Análise de Sequência de DNA/métodos , Compostos de Prata/farmacologia , Microbiologia do Solo , Bactérias/genética , DNA Bacteriano/análise , Nanopartículas Metálicas , Nitrificação/efeitos dos fármacos , RNA Ribossômico 16S/análise
18.
J Hazard Mater ; 300: 788-795, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26322966

RESUMO

Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability.


Assuntos
Agroquímicos/farmacologia , Fertilizantes , Lactuca/metabolismo , Nanopartículas Metálicas/química , Compostos de Prata/metabolismo , Prata/metabolismo , Biomassa , Peróxido de Hidrogênio/farmacologia , Fosfatos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Cloreto de Potássio/farmacologia , Solo/química , Tiossulfatos/farmacologia
19.
Environ Pollut ; 193: 102-110, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25014017

RESUMO

Manufactured nanoparticles (NPs) present in consumer products could enter soils through re-use of biosolids. Among these NPs are those based on silver (Ag), which are found sulphidised (e.g. silver sulphide, Ag2S) in biosolids. Herein, our aim was to examine the release of retained Ag(0) and Ag2S NPs in soils and biosolids as facilitated by environmentally and agriculturally relevant ligands. Under natural soil conditions, exemplified by potassium nitrate and humic acid experiments, release of Ag retained in soil was limited. The highest total Ag release was facilitated by ligands that simulated root exudates (citrate) or fertilisers (thiosulphate). Released Ag was predominantly present in the colloidal phase (>3 kDa-< 0.45 µm); intact NPs only identified in Ag2S-NP extracts. For biosolids containing nanoparticulate-Ag-S, release was also enhanced by thiosulphate, though mostly as colloidal-Ag - not intact NPs. These results suggest that exposure to NPs as a result of its release from soils or biosolids will be low.


Assuntos
Nanopartículas Metálicas/análise , Compostos de Prata/análise , Prata/análise , Solo/química , Ácido Cítrico/química
20.
J Hazard Mater ; 262: 496-503, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24076573

RESUMO

Owing of their wide-range of commercial applications, fullerene (C60) nanoparticles, are likely to reach environments through the application of treated sludge (biosolids) from wastewater treatment plants to soils. We examined the release behaviour of C60 from contaminated biosolids added to soils with varying physicochemical characteristics. Incubation studies were carried out in the dark for up to 24 weeks, by adding biosolids spiked (1.5mg/kg) with three forms of C60 (suspended in water, in humic acid, and precipitated/particulate) to six contrasting soils. Leaching of different biosolids+soil systems showed that only small fractions of C60 (<5% of applied amount) were released, depending on incubation time and soil properties (particularly dissolved organic carbon content). Release of C60 from unamended soils was greater (at least twice as much) than from biosolids-amended soils. The form of C60 used to spike the biosolids had no significant effect on the release of C60 from the different systems. Contact time of C60 in these systems only slightly increased the apparent release up to 8 weeks, followed by a decrease to 24 weeks. Mass balance analysis at the completion of the experiment revealed that 20-60% of the initial C60 applied could not be accounted for in these systems; the reasons for this are discussed.


Assuntos
Fertilizantes , Fulerenos/química , Esgotos , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA