Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 241: 107745, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37579550

RESUMO

Medical data processing has grown into a prominent topic in the latest decades with the primary goal of maintaining patient data via new information technologies, including the Internet of Things (IoT) and sensor technologies, which generate patient indexes in hospital data networks. Innovations like distributed computing, Machine Learning (ML), blockchain, chatbots, wearables, and pattern recognition can adequately enable the collection and processing of medical data for decision-making in the healthcare era. Particularly, to assist experts in the disease diagnostic process, distributed computing is beneficial by digesting huge volumes of data swiftly and producing personalized smart suggestions. On the other side, the current globe is confronting an outbreak of COVID-19, so an early diagnosis technique is crucial to lowering the fatality rate. ML systems are beneficial in aiding radiologists in examining the incredible amount of medical images. Nevertheless, they demand a huge quantity of training data that must be unified for processing. Hence, developing Deep Learning (DL) confronts multiple issues, such as conventional data collection, quality assurance, knowledge exchange, privacy preservation, administrative laws, and ethical considerations. In this research, we intend to convey an inclusive analysis of the most recent studies in distributed computing platform applications based on five categorized platforms, including cloud computing, edge, fog, IoT, and hybrid platforms. So, we evaluated 27 articles regarding the usage of the proposed framework, deployed methods, and applications, noting the advantages, drawbacks, and the applied dataset and screening the security mechanism and the presence of the Transfer Learning (TL) method. As a result, it was proved that most recent research (about 43%) used the IoT platform as the environment for the proposed architecture, and most of the studies (about 46%) were done in 2021. In addition, the most popular utilized DL algorithm was the Convolutional Neural Network (CNN), with a percentage of 19.4%. Hence, despite how technology changes, delivering appropriate therapy for patients is the primary aim of healthcare-associated departments. Therefore, further studies are recommended to develop more functional architectures based on DL and distributed environments and better evaluate the present healthcare data analysis models.


Assuntos
COVID-19 , Internet das Coisas , Humanos , Algoritmos , Computação em Nuvem , Aprendizado de Máquina
2.
Artif Intell Med ; 141: 102572, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37295902

RESUMO

With an estimated five million fatal cases each year, lung cancer is one of the significant causes of death worldwide. Lung diseases can be diagnosed with a Computed Tomography (CT) scan. The scarcity and trustworthiness of human eyes is the fundamental issue in diagnosing lung cancer patients. The main goal of this study is to detect malignant lung nodules in a CT scan of the lungs and categorize lung cancer according to severity. In this work, cutting-edge Deep Learning (DL) algorithms were used to detect the location of cancerous nodules. Also, the real-life issue is sharing data with hospitals around the world while bearing in mind the organizations' privacy issues. Besides, the main problems for training a global DL model are creating a collaborative model and maintaining privacy. This study presented an approach that takes a modest amount of data from multiple hospitals and uses blockchain-based Federated Learning (FL) to train a global DL model. The data were authenticated using blockchain technology, and FL trained the model internationally while maintaining the organization's anonymity. First, we presented a data normalization approach that addresses the variability of data obtained from various institutions using various CT scanners. Furthermore, using a CapsNets method, we classified lung cancer patients in local mode. Finally, we devised a way to train a global model cooperatively utilizing blockchain technology and FL while maintaining anonymity. We also gathered data from real-life lung cancer patients for testing purposes. The suggested method was trained and tested on the Cancer Imaging Archive (CIA) dataset, Kaggle Data Science Bowl (KDSB), LUNA 16, and the local dataset. Finally, we performed extensive experiments with Python and its well-known libraries, such as Scikit-Learn and TensorFlow, to evaluate the suggested method. The findings showed that the method effectively detects lung cancer patients. The technique delivered 99.69 % accuracy with the smallest possible categorization error.


Assuntos
Blockchain , Neoplasias Pulmonares , Humanos , Tomografia Computadorizada por Raios X , Neoplasias Pulmonares/diagnóstico por imagem , Algoritmos , Ciência de Dados
3.
Comput Biol Med ; 145: 105461, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366470

RESUMO

With the global spread of the COVID-19 epidemic, a reliable method is required for identifying COVID-19 victims. The biggest issue in detecting the virus is a lack of testing kits that are both reliable and affordable. Due to the virus's rapid dissemination, medical professionals have trouble finding positive patients. However, the next real-life issue is sharing data with hospitals around the world while considering the organizations' privacy concerns. The primary worries for training a global Deep Learning (DL) model are creating a collaborative platform and personal confidentiality. Another challenge is exchanging data with health care institutions while protecting the organizations' confidentiality. The primary concerns for training a universal DL model are creating a collaborative platform and preserving privacy. This paper provides a model that receives a small quantity of data from various sources, like organizations or sections of hospitals, and trains a global DL model utilizing blockchain-based Convolutional Neural Networks (CNNs). In addition, we use the Transfer Learning (TL) technique to initialize layers rather than initialize randomly and discover which layers should be removed before selection. Besides, the blockchain system verifies the data, and the DL method trains the model globally while keeping the institution's confidentiality. Furthermore, we gather the actual and novel COVID-19 patients. Finally, we run extensive experiments utilizing Python and its libraries, such as Scikit-Learn and TensorFlow, to assess the proposed method. We evaluated works using five different datasets, including Boukan Dr. Shahid Gholipour hospital, Tabriz Emam Reza hospital, Mahabad Emam Khomeini hospital, Maragheh Dr.Beheshti hospital, and Miandoab Abbasi hospital datasets, and our technique outperform state-of-the-art methods on average in terms of precision (2.7%), recall (3.1%), F1 (2.9%), and accuracy (2.8%).


Assuntos
Blockchain , COVID-19 , COVID-19/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Privacidade , Tomografia Computadorizada por Raios X
4.
J Biomed Inform ; 82: 47-62, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29655946

RESUMO

Healthcare provides many services such as diagnosing, treatment, prevention of diseases, illnesses, injuries, and other physical and mental disorders. Large-scale distributed data processing applications in healthcare as a basic concept operates on large amounts of data. Therefore, big data application functions are the main part of healthcare operations, but there was not any comprehensive and systematic survey about studying and evaluating the important techniques in this field. Therefore, this paper aims at providing the comprehensive, detailed, and systematic study of the state-of-the-art mechanisms in the big data related to healthcare applications in five categories, including machine learning, cloud-based, heuristic-based, agent-based, and hybrid mechanisms. Also, this paper displayed a systematic literature review (SLR) of the big data applications in the healthcare literature up to the end of 2016. Initially, 205 papers were identified, but a paper selection process reduced the number of papers to 29 important studies.


Assuntos
Big Data , Mineração de Dados/métodos , Informática Médica/métodos , Informática Médica/tendências , Computação em Nuvem , Gráficos por Computador , Tomada de Decisões , Atenção à Saúde , Genômica , Humanos , Internet , Aprendizado de Máquina , Redes Neurais de Computação , Publicações , Máquina de Vetores de Suporte , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA