Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 616(7957): 495-503, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046085

RESUMO

Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.


Assuntos
Nadadeiras de Animais , Evolução Biológica , Genoma , Genômica , Rajidae , Animais , Nadadeiras de Animais/anatomia & histologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Rajidae/anatomia & histologia , Rajidae/genética , Peixe-Zebra/genética , Genes Reporter/genética
2.
Trends Ecol Evol ; 36(9): 860-873, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34218955

RESUMO

Physical principles and laws determine the set of possible organismal phenotypes. Constraints arising from development, the environment, and evolutionary history then yield workable, integrated phenotypes. We propose a theoretical and practical framework that considers the role of changing environments. This 'ecomechanical approach' integrates functional organismal traits with the ecological variables. This approach informs our ability to predict species shifts in survival and distribution and provides critical insights into phenotypic diversity. We outline how to use the ecomechanical paradigm using drag-induced bending in trees as an example. Our approach can be incorporated into existing research and help build interdisciplinary bridges. Finally, we identify key factors needed for mass data collection, analysis, and the dissemination of models relevant to this framework.


Assuntos
Evolução Biológica , Ecossistema , Fenótipo , Árvores
3.
Mol Biol Evol ; 38(8): 3078-3092, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33720362

RESUMO

Cichlid fishes exhibit rapid, extensive, and replicative adaptive radiation in feeding morphology. Plasticity of the cichlid jaw has also been well documented, and this combination of iterative evolution and developmental plasticity has led to the proposition that the cichlid feeding apparatus represents a morphological "flexible stem." Under this scenario, the fixation of environmentally sensitive genetic variation drives evolutionary divergence along a phenotypic axis established by the initial plastic response. Thus, if plasticity is predictable then so too should be the evolutionary response. We set out to explore these ideas at the molecular level by identifying genes that underlie both the evolution and plasticity of the cichlid jaw. As a first step, we fine-mapped an environment-specific quantitative trait loci for lower jaw shape in cichlids, and identified a nonsynonymous mutation in the ciliary rootlet coiled-coil 2 (crocc2), which encodes a major structural component of the primary cilium. Given that primary cilia play key roles in skeletal mechanosensing, we reasoned that this gene may confer its effects by regulating the sensitivity of bone to respond to mechanical input. Using both cichlids and zebrafish, we confirmed this prediction through a series of experiments targeting multiple levels of biological organization. Taken together, our results implicate crocc2 as a novel mediator of bone formation, plasticity, and evolution.


Assuntos
Adaptação Fisiológica , Ciclídeos/genética , Proteínas do Citoesqueleto/genética , Especiação Genética , Arcada Osseodentária/anatomia & histologia , Animais , Ciclídeos/anatomia & histologia , Feminino , Masculino
4.
Evolution ; 75(3): 672-687, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33438760

RESUMO

Adaptive radiations are often stereotypical, as populations repeatedly specialize along conserved environmental axes. Phenotypic plasticity may be similarly stereotypical, as individuals respond to environmental cues. These parallel patterns of variation, which are often consistent across traits, have led researchers to propose that plasticity can facilitate predictable patterns of evolution along environmental gradients. This "flexible stem" model of evolution raises questions about the genetic nature of plasticity, including how complex is the genetic basis for plasticity? Is plasticity across traits mediated by many distinct loci, or few "global" regulators? To address these questions, we reared a hybrid cichlid mapping population on alternate diet regimes mimicking an important environmental axis. We show that plasticity across an array of ecologically relevant traits is generally morphologically integrated, such that traits respond in a coordinated manner, especially those with overlapping function. Our genetic data are more ambiguous. While our mapping experiment provides little evidence for global genetic regulators of plasticity, these data do contain a genetic signal for the integration of plasticity across traits. Overall, our data suggest a compromise between genetic modularity, whereby plasticity may evolve independently across traits, and low level but widespread genetic integration, establishing the potential for plasticity to experience coordinated evolution.


Assuntos
Adaptação Fisiológica/genética , Ciclídeos/genética , Animais , Evolução Biológica , Ciclídeos/anatomia & histologia , Dieta , Comportamento Alimentar , Feminino , Lagos , Masculino , Locos de Características Quantitativas
5.
Proc Natl Acad Sci U S A ; 117(32): 19321-19327, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719137

RESUMO

Phenotypic plasticity, the ability of a single genotype to produce multiple phenotypes under different environmental conditions, is critical for the origins and maintenance of biodiversity; however, the genetic mechanisms underlying plasticity as well as how variation in those mechanisms can drive evolutionary change remain poorly understood. Here, we examine the cichlid feeding apparatus, an icon of both prodigious evolutionary divergence and adaptive phenotypic plasticity. We first provide a tissue-level mechanism for plasticity in craniofacial shape by measuring rates of bone deposition within functionally salient elements of the feeding apparatus in fishes forced to employ alternate foraging modes. We show that levels and patterns of phenotypic plasticity are distinct among closely related cichlid species, underscoring the evolutionary potential of this trait. Next, we demonstrate that hedgehog (Hh) signaling, which has been implicated in the evolutionary divergence of cichlid feeding architecture, is associated with environmentally induced rates of bone deposition. Finally, to demonstrate that Hh levels are the cause of the plastic response and not simply the consequence of producing more bone, we use transgenic zebrafish in which Hh levels could be experimentally manipulated under different foraging conditions. Notably, we find that the ability to modulate bone deposition rates in different environments is dampened when Hh levels are reduced, whereas the sensitivity of bone deposition to different mechanical demands increases with elevated Hh levels. These data advance a mechanistic understanding of phenotypic plasticity in the teleost feeding apparatus and in doing so contribute key insights into the origins of adaptive morphological radiations.


Assuntos
Ciclídeos/metabolismo , Proteínas de Peixes/metabolismo , Proteínas Hedgehog/metabolismo , Crânio/crescimento & desenvolvimento , Adaptação Fisiológica , Animais , Ciclídeos/genética , Ciclídeos/crescimento & desenvolvimento , Proteínas de Peixes/genética , Proteínas Hedgehog/genética , Transdução de Sinais , Crânio/metabolismo
6.
Evolution ; 71(9): 2273-2274, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28791672
7.
Mol Ecol ; 26(1): 291-303, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27900808

RESUMO

Adaptive radiations are often characterized by the rapid evolution of traits associated with divergent feeding modes. For example, the evolutionary history of African cichlids is marked by repeated and coordinated shifts in skull, trophic, fin and body shape. Here, we seek to explore the molecular basis for fin shape variation in Lake Malawi cichlids. We first described variation within an F2 mapping population derived by crossing two cichlid species with divergent morphologies including fin shape. We then used this population to genetically map loci that influence variation in this trait. We found that the genotype-phenotype map for fin shape is largely distinct from other morphological characters including body and craniofacial shape. These data suggest that key aspects of fin, body and jaw shape are genetically modular and that the coordinated evolution of these traits in cichlids is more likely due to common selective pressures than to pleiotropy or linkage. We next combined genetic mapping data with population-level genome scans to identify wnt7aa and col1a1 as candidate genes underlying variation in the number of pectoral fin ray elements. Gene expression patterns across species with different fin morphologies and small molecule manipulation of the Wnt pathway during fin development further support the hypothesis that variation at these loci underlies divergence in fin shape between cichlid species. In all, our data provide additional insights into the genetic and molecular mechanisms associated with morphological divergence in this important adaptive radiation.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Ciclídeos/anatomia & histologia , Ciclídeos/genética , Adaptação Biológica , Animais , Mapeamento Cromossômico , Genética Populacional , Genótipo , Fenótipo , Locos de Características Quantitativas , Via de Sinalização Wnt
8.
Mol Ecol ; 25(24): 6012-6023, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27516345

RESUMO

Phenotypic plasticity allows organisms to change their phenotype in response to shifts in the environment. While a central topic in current discussions of evolutionary potential, a comprehensive understanding of the genetic underpinnings of plasticity is lacking in systems undergoing adaptive diversification. Here, we investigate the genetic basis of phenotypic plasticity in a textbook adaptive radiation, Lake Malawi cichlid fishes. Specifically, we crossed two divergent species to generate an F3 hybrid mapping population. At early juvenile stages, hybrid families were split and reared in alternate foraging environments that mimicked benthic/scraping or limnetic/sucking modes of feeding. These alternate treatments produced a variation in morphology that was broadly similar to the major axis of divergence among Malawi cichlids, providing support for the flexible stem theory of adaptive radiation. Next, we found that the genetic architecture of several morphological traits was highly sensitive to the environment. In particular, of 22 significant quantitative trait loci (QTL), only one was shared between the environments. In addition, we identified QTL acting across environments with alternate alleles being differentially sensitive to the environment. Thus, our data suggest that while plasticity is largely determined by loci specific to a given environment, it may also be influenced by loci operating across environments. Finally, our mapping data provide evidence for the evolution of plasticity via genetic assimilation at an important regulatory locus, ptch1. In all, our data address long-standing discussions about the genetic basis and evolution of plasticity. They also underscore the importance of the environment in affecting developmental outcomes, genetic architectures, morphological diversity and evolutionary potential.


Assuntos
Adaptação Biológica/genética , Ciclídeos/genética , Meio Ambiente , Genética Populacional , Locos de Características Quantitativas , Animais , Comportamento Alimentar , Hibridização Genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA