Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 202: 177-190, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35033532

RESUMO

Chitosan (Cs) based biomaterials seem to be indispensable for neovasculogenesis and angiogenesis that ensure accelerated wound healing. Cs/poly (vinyl alcohol) (PVA) bio-constructs were cross-linked and investigated with varying concentrations of aminopropyltriethoxysilane (APTES). This study comprised of three phases: fabrication of hydrogels, characterization, assessment of angiogenic potential along with toxico-pathological effects, wound healing efficacy in chick and mice, respectively. The hydrogels were characterized by FTIR, SEM and TGA and the swelling response was examined in different solvents. The hydrogels swelling ratio was decreased with increasing amount of APTES, showed the highest swelling at acidic and basic pH while low swelling at neutral pH. Chorioallantoic membranes (CAM) assay was performed to study in-vivo angiogenesis, toxicological, morphological, biochemical and histological analyses in developing chicks. The results showed remarkably improved angiogenesis with little deviations in morphological, histological features and liver enzymes of chick embryos at higher concentrations of APTES. Besides, full thickness wounds were excised on mice dorsolateral skin to assess the wound healing. The rate of wound size reduction was significantly higher after topical application of hydrogels with elevated levels of crosslinker. Hence, the hydrogels showed enhanced angiogenesis, accelerated wound healing with little or no observable in-vivo toxicity.


Assuntos
Quitosana , Animais , Embrião de Galinha , Quitosana/química , Quitosana/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Propilaminas , Silanos , Cicatrização
3.
Front Plant Sci ; 7: 1330, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630655

RESUMO

In this study, we have investigated the effect of copper oxide nanoparticles (CuO-NPs) on callogenesis and regeneration of Oryza sativa L (Super Basmati, Basmati 2000, Basmati 370, and Basmati 385). In this regard, CuO-NPs have been bio-synthesized via Azadirachta indica leaf extract. Scanning electron microscope (SEM) analysis depicts average particle size of 40 ± 5 nm with highly homogenous and spherical morphology. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been employed to confirm the phase purity of the synthesized NPs. It is found that CuO-NPs exhibit very promising results against callus induction. It is attributed to the fact that green synthesized CuO-NPs at optimum dosage possess very supportive effects on plant growth parameters. In contrast to callogenesis, differential regeneration pattern has been observed against all of the examined O. sativa L. indigenous verities. Overall observation concludes that CuO, being one of the essential plant nutrients, has greatly tailored the nutritive properties at nano-scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA