Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
AAPS PharmSciTech ; 25(3): 44, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383866

RESUMO

The study aims to design and optimize the floating formulations of the aqueous extract of Desmostachya bipinnata (ADB) to treat peptic ulcers. The trial concentrations of HPMC E50, HPMC K4M, and Carbopol 940 were used as factors, and floating lag time, total floating time, and % drug release at 12 h were used as responses. The formulation underwent evaluation for different parameters: aspirin-induced ulcers in rats assessed the antiulcer activity, and X-ray studies in rabbits evaluated the gastroretentive nature. The optimized formulation has shown a floating lag time of 32 s and floated in the gastric medium for more than 9 h with a maximum drug release of 93% at the end of 12 h by following the Korsmeyer-Peppas drug release mechanism. The optimized formulation has good flow properties. The FT-IR, DSC, and XRD studies show ADB and excipients didn't show any incompatibility. The formulation has shown significant antiulcer activity against aspirin-induced ulcers in rats, with an ulcer index of 3.38 ± 0.24 and inhibition of 76.67 ± 0.56%. The in vivo X-ray imaging proved the gastric retention of the formulations for more than 8 h. The results of the formulations demonstrate the floating ability and sustained drug release of the tablet responsible for treating peptic ulcers to show a localized effect in the gastric region and to maintain the ROS levels.


Assuntos
Úlcera Péptica , Úlcera , Animais , Coelhos , Ratos , Aspirina/efeitos adversos , Preparações de Ação Retardada , Espectroscopia de Infravermelho com Transformada de Fourier , Comprimidos
2.
Int J Pharm ; 650: 123686, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38070658

RESUMO

Combination chemotherapy, involving the intervention of two or more anti-neoplastic agents has been the cornerstone in breast cancer treatment, owing to the applications it holds in contrast to the mono-therapy approach. This research predominantly focussed on proving the synergy between Lapatinib (LPT) and 5-Fluorouracil (5-FU) and further enhancing its localized permeation via transfersome-loaded delivery and iontophoresis to treat breast tumors. The IC50 values for LPT and 5-FU were found to be 19.38 µg/ml and 5.7 µg/ml respectively and their synergistic effect was proven by the Chou-Talalay assay using CompuSyn software. Furthermore, LPT and 5-FU were encapsulated within transfersomes and administered via the transpapillary route. The drug-loaded carriers were characterized for their particle size, polydispersity index, zeta potential, and entrapment efficiency. The ex vivo rat skin permeation studies indicated that when compared to LPT dispersion and 5-FU solution, drug-loaded transfersomes exhibited better permeability and their transpapillary permeation was enhanced on using iontophoresis. Moreover, both LPT and 5-FU transfersomes were found to be stable for 3 months when stored at a temperature of 5 ± 3 °C. The results indicated that this treatment strategy could be an effective approach in contrast to some of the conventional treatments employed to date.


Assuntos
Neoplasias da Mama , Fluoruracila , Ratos , Animais , Humanos , Feminino , Administração Cutânea , Lapatinib , Iontoforese , Portadores de Fármacos , Neoplasias da Mama/tratamento farmacológico , Tamanho da Partícula
3.
J Biomol Struct Dyn ; 42(7): 3764-3789, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37227789

RESUMO

Glioblastoma (GBM) is an aggressive malignant type of brain tumor. Targeting one single intracellular pathway might not alleviate the disease, rather it activates the other molecular pathways that lead to the worsening of the disease condition. Therefore, in this study, we attempted to target both isocitrate dehydrogenase 1 (IDH1) and IDH2, which are one of the most commonly mutated proteins in GBM and other cancer types. Here, standard precision and extra precision docking, IFD, MM-GBSA, QikProp, and molecular dynamics (MD) simulation were performed to identify the potential dual inhibitor for IDH1 and IDH2 from the enamine database containing 59,161 ligands. Upon docking the ligands with IDH1 (PDB: 6VEI) and IDH2 (PDB: 6VFZ), the top eight ligands were selected, based on the XP Glide score. These ligands produced favourable MMGBSA scores and ADME characteristics. Finally, the top four ligands 12953, 44825, 51295, and 53210 were subjected to MD analysis. Interestingly, 53210 showed maximum interaction with Gln 277 for 99% in IDH1 and Gln 316 for 100% in IDH2, which are the crucial amino acids for the inhibitory function of IDH1 and IDH2 to target GBM. Therefore, the present study attempts to identify the novel molecules which could possess a pan-inhibitory action on both IDH1 and IDH that could be crucial in the management of GBM. Yet further evaluation involving in vitro and in vivo studies is warranted to support the data in our current study.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Mutação , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/tratamento farmacológico
4.
Eur J Pharm Biopharm ; 190: 220-230, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524214

RESUMO

In this study, we used molecular simulations to design Ceritinib (CRT) co-amorphous materials (CAMs) with concurrent improvement in solubility and bioavailability. Computational modeling enabled us to select the co-former by estimating the binding energy and intermolecular interactions. Rutin (RTH) was selected as a co-former for CRT CAMs using the solvent evaporation method to anticipate simultaneous improvement of solubility and bioavailability. The solid state characterization using DSC, XRPD, FT-IR, and a significant shift in Gordon Taylor experimental Tg values of co-amorphous materials revealed single amorphous phase formation and intermolecular interactions between CRT and RTH. The co-amorphous materials exhibited physical stability for up to 4 months under dry conditions (40 °C). Further, co-amorphous materials maintained the supersaturation for 24 hrs and improved solubility as well as dissolution of CRT. CRT:RTH 1:1 CAMs improved the permeability of CRT by 2 fold, estimated by employing the everted gut sac method. The solubility advantage of CAMs was also reflected in pharmacokinetic parameters, with a 3.1-fold and 2-fold improvement of CRT:RTH 2:1 in CRT exposure (AUC 0-t) and plasma concentration (Cmax) compared to the physical mixture, respectively.


Assuntos
Rutina , Sulfonas , Disponibilidade Biológica , Espectroscopia de Infravermelho com Transformada de Fourier , Solubilidade , Estabilidade de Medicamentos , Difração de Raios X
5.
Sci Rep ; 13(1): 7947, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193898

RESUMO

Non-small cell lung carcinomas (NSCLC) are the predominant form of lung malignancy and the reason for the highest number of cancer-related deaths. Widespread deregulation of Akt, a serine/threonine kinase, has been reported in NSCLC. Allosteric Akt inhibitors bind in the space separating the Pleckstrin homology (PH) and catalytic domains, typically with tryptophan residue (Trp-80). This could decrease the regulatory site phosphorylation by stabilizing the PH-in conformation. Hence, in this study, a computational investigation was undertaken to identify allosteric Akt-1 inhibitors from FDA-approved drugs. The molecules were docked at standard precision (SP) and extra-precision (XP), followed by Prime molecular mechanics-generalized Born surface area (MM-GBSA), and molecular dynamics (MD) simulations on selected hits. Post XP-docking, fourteen best hits were identified from a library of 2115 optimized FDA-approved compounds, demonstrating several beneficial interactions such as pi-pi stacking, pi-cation, direct, and water-bridged hydrogen bonds with the crucial residues (Trp-80 and Tyr-272) and several amino acid residues in the allosteric ligand-binding pocket of Akt-1. Subsequent MD simulations to verify the stability of chosen drugs to the Akt-1 allosteric site showed valganciclovir, dasatinib, indacaterol, and novobiocin to have high stability. Further, predictions for possible biological interactions were performed using computational tools such as ProTox-II, CLC-Pred, and PASSOnline. The shortlisted drugs open a new class of allosteric Akt-1 inhibitors for the therapy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Simulação de Dinâmica Molecular
6.
Pharmaceutics ; 15(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242802

RESUMO

Wound healing is a complex process that can be further complicated in chronic wounds, leading to prolonged healing times, high healthcare costs, and potential patient morbidity. Nanotechnology has shown great promise in developing advanced wound dressings that promote wound healing and prevent infection. The review article presents a comprehensive search strategy that was applied to four databases, namely Scopus, Web of Science, PubMed, and Google Scholar, using specific keywords and inclusion/exclusion criteria to select a representative sample of 164 research articles published between 2001 and 2023. This review article provides an updated overview of the different types of nanomaterials used in wound dressings, including nanofibers, nanocomposites, silver-based nanoparticles, lipid nanoparticles, and polymeric nanoparticles. Several recent studies have shown the potential benefits of using nanomaterials in wound care, including the use of hydrogel/nano silver-based dressings in treating diabetic foot wounds, the use of copper oxide-infused dressings in difficult-to-treat wounds, and the use of chitosan nanofiber mats in burn dressings. Overall, developing nanomaterials in wound care has complemented nanotechnology in drug delivery systems, providing biocompatible and biodegradable nanomaterials that enhance wound healing and provide sustained drug release. Wound dressings are an effective and convenient method of wound care that can prevent wound contamination, support the injured area, control hemorrhaging, and reduce pain and inflammation. This review article provides valuable insights into the potential role of individual nanoformulations used in wound dressings in promoting wound healing and preventing infections, and serves as an excellent resource for clinicians, researchers, and patients seeking improved healing outcomes.

7.
Curr Pharm Des ; 29(14): 1069-1091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143271

RESUMO

The expression "as sure as night follows a day" emulates those certain cycles in the environment that are always stable. Circadian rhythms are a group of processes that occur within the body in synchronisation with the external factors in a 24 h cycle. Changes in lifestyle and work shifts have disrupted these stable rhythms, which is a leading cause of lifestyle diseases. Associations between these biological clocks and diseases are abundant. However, it is also known that certain drugs work more efficiently and have minimum toxicity when given during a particular phase of the circadian cycle. Chronotherapeutics focuses on treating diseases according to the endogenous processes which mediate xenobiotic metabolism and drug response at a cellular level. Therefore, treatment of those diseases that show aggravation of symptoms according to the circadian rhythms at a particular time is highly beneficial by chronotherapy. In this article, we have emphasised how the changes in rhythms caused diseases and how chronotherapeutic approaches such as controlled drug release technologies can be a better option for these circadian manipulations that seem to influence all types of disease conditions.


Assuntos
Cronoterapia , Relógios Circadianos , Humanos , Preparações de Ação Retardada , Ritmo Circadiano/fisiologia , Sistemas de Liberação de Medicamentos
8.
J Biomol Struct Dyn ; 41(22): 13168-13179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36757134

RESUMO

A novel coronavirus SARS-CoV-2 has caused a worldwide pandemic and remained a severe threat to the entire human population. Researchers worldwide are struggling to find an effective drug treatment to combat this deadly disease. Many FDA-approved drugs from varying inhibitory classes and plant-derived compounds are screened to combat this virus. Still, due to the lack of structural information and several mutations of this virus, initial drug discovery efforts have limited success. A high-resolution crystal structure of important proteins like the main protease (3CLpro) that are required for SARS-CoV-2 viral replication and polymerase (RdRp) and papain-like protease (PLpro) as a vital target in other coronaviruses still presents important targets for the drug discovery. With this knowledge, scaffold library of Interbioscreen (IBS) database was explored through molecular docking, MD simulation and postdynamic binding free energy studies. The 3D docking structures and simulation data for the IBS compounds was studied and articulated. The compounds were further evaluated for ADMET studies using QikProp and SwissADME tools. The results revealed that the natural compounds STOCK2N-00385, STOCK2N-00244, and STOCK2N-00331 interacted strongly with 3CLpro, PLpro, and RdRp, respectively, and ADMET data was also observed in the range of limits for almost all the compounds with few exceptions. Thus, it suggests that these compounds may be potential inhibitors of selected target proteins, or their structural scaffolds can be further optimized to obtain effective drug candidates for SARS-CoV-2. The findings of in-silico data need to be supported by in-vivo studies which could shed light on understanding the exact mode of inhibitory action.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Peptídeo Hidrolases , Humanos , Papaína , Simulação de Acoplamento Molecular , SARS-CoV-2 , RNA Polimerase Dependente de RNA , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
9.
Int J Pharm ; 632: 122558, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36592891

RESUMO

Resveratrol (RVT) is a polyphenolic phytoestrogen which has shown antiproliferative activity in breast cancer. However, its low bioavailability and short half-life have restricted its use. The current study aimed to develop transdermal patches of RVT and evaluate its site-specific delivery for breast cancer therapy. Different penetration enhancers were screened using a computational tool, quantitative structure propery relationship (QSPR). The best permeation of RVT was observed in a patch comprising hydroxypropyl methylcellulose (HPMC) E15LV: HPMC-K4M: polyvinyl pyrrolidone (PVP) K30 in the ratio of 3:1:2 as release controlling polymers with Glycerol:Capryol 90 (4:1) as penetration enhancer and plasticizer. To assess the localized delivery of RVT, the patch was applied to the breast of female rats. Higher breast tissue disposition with lower systemic concentration was observed compared to oral administration, demonstrated by increased AUC and MRT. Further, the optimized RVT patches were tested in 7,12-Dimethylbenz[a]anthracene (DMBA) induced rat mammary cancer. Compared to oral RVT, the application of RVT tansdermal patches significantly reduced the tumor volume and serum CA 15-3, a cancer biomarker. Thus, the RVT transdermal patch may be a viable approach for ensuring high local concentration of drug for site-specific delivery in breast cancer therapy.


Assuntos
Neoplasias , Absorção Cutânea , Ratos , Feminino , Animais , Administração Cutânea , Resveratrol , Adesivo Transdérmico , Povidona , Neoplasias/metabolismo , Pele/metabolismo
10.
Viruses ; 15(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36680253

RESUMO

The coronavirus disease (COVID-19) is a pandemic that started in the City of Wuhan, Hubei Province, China, caused by the spread of coronavirus (SARS-CoV-2). Drug discovery teams around the globe are in a race to develop a medicine for its management. It takes time for a novel molecule to enter the market, and the ideal way is to exploit the already approved drugs and repurpose them therapeutically. We have attempted to screen selected molecules with an affinity towards multiple protein targets in COVID-19 using the Schrödinger suit for in silico predictions. The proteins selected were angiotensin-converting enzyme-2 (ACE2), main protease (MPro), and spike protein. The molecular docking, prime MM-GBSA, induced-fit docking (IFD), and molecular dynamics (MD) simulations were used to identify the most suitable molecule that forms a stable interaction with the selected viral proteins. The ligand-binding stability for the proteins PDB-IDs 1ZV8 (spike protein), 5R82 (Mpro), and 6M1D (ACE2), was in the order of nintedanib > quercetin, nintedanib > darunavir, nintedanib > baricitinib, respectively. The MM-GBSA, IFD, and MD simulation studies imply that the drug nintedanib has the highest binding stability among the shortlisted. Nintedanib, primarily used for idiopathic pulmonary fibrosis, can be considered for repurposing for us against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19 , Simulação de Dinâmica Molecular , Antivirais/uso terapêutico , Antivirais/química , Reposicionamento de Medicamentos
11.
Des Monomers Polym ; 25(1): 212-219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910523

RESUMO

Hyaluronic acid (HA) is a naturally occurring biopolymer, with a remarkable wound healing property. Zinc-oxide non-eugenol is a material widely used for periodontal dressing in dentistry. However, it has been reported that zinc oxide non-eugenol is toxic to osteoblasts and fibroblasts. Hence, the present study aimed to evaluate the drug release and cytotoxicity of HA and zinc-oxide gels. Hydrogels of HA and zinc oxide were formulated with carbopol as a carrier. In vitro drug release was performed by UV spectrophotometry, dialysis, and vial bag methods. Cytotoxicity assessment of HA and zinc-oxide gels was performed in human periodontal ligament fibroblasts (HPdLF) and human gingival fibroblasts (hGFs). An inverted phase-contrast microscope was used to assess the morphological changes. At 24 and 48 hr, HPdLF cells showed the highest viability in 0.1% low molecular weight-HA (LMW-HA) with a median value of 131.9, and hGFs showed the highest viability in 5% LMW-HA with a median of 129.56. The highest viability of HPdLF cells was observed in 5% high molecular weight-HA (HMW-HA), with a median value of 127.11. hGFs showed the highest viability in 1% HMW-HA with a median value of 97.99. Within the limitations of the present study, we concluded that LMW-HA is more efficient than HMW-HA. Both HPdLF and hGF cells showed complete cell morbidity with zinc-oxide hydrogels. Therefore, zinc oxide-based gels in concentrations as low as 9% could be toxic intraorally to soft tissues that harbor gingival and periodontal ligament fibroblasts.

12.
Biomater Adv ; 140: 213085, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36037762

RESUMO

Localized drug delivery to the breast tissues is an area of interest as a potential route to ensure site-specific drug delivery. Transpapillary delivery via the mammary papilla has advantages as most breast tumors arise from the milk ducts. The present study explored the plausibility of transpapillary delivery of a phytochemical, resveratrol (RVT), for breast cancer treatment. RVT was encapsulated within the transfersomes (RVT-TRF) to enable a sustained release of the drug using the biomaterial soya phosphatidylcholine (SPC). Iontophoresis was applied to further accelerate the penetration of the RVT-TRF across the mammary papilla to the breast tissue. The RVT-TRF development was optimized by the Design of Experiments (DoE) approach. The in vitro transpapillary iontophoresis study on porcine mammary papilla showed an enhanced penetration of RVT-TRF when compared to passive diffusion. The transpapillary delivery was further confirmed from the in vitro fluorescent microscopy study using FITC conjugated RVT-TRF. The optimized RVT-TRF delivered via transpapillary route showed a higher Cmax and AUC when compared to pure RVT given orally. A significant reduction in the tumor volume and the serum biomarker CA 15-3, when evaluated in a chemically induced breast cancer rat model, provided evidence of the effectiveness of the developed formulation when delivered locally via transpapillary route compared to the oral route. Thus the developed RVT-TRF administered via transpapillary iontophoresis technique is a promising strategy enabling a localized delivery for effective breast cancer therapy.


Assuntos
Neoplasias da Mama , Iontoforese , Administração Oral , Animais , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Ratos , Resveratrol/farmacologia , Suínos
13.
ACS Omega ; 7(10): 8229-8245, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35309455

RESUMO

MCM-41, a type of mesoporous silica nanoparticle, has garnered widespread interests as a useful carrier for drug delivery wherein the drug gets adsorbed into the pores of the carrier. To understand the adsorption mechanism and release of the drug at the molecular level, in the current study, it was attempted to generate a computational model for the loading of 5-fluorouracil (5-FU), a chemotherapeutic agent into surface-modified MCM-41. The molecular surface models of the mesoporous silica (MCM-41) nanoparticle with different surface substitutions were created. In the first stage, molecular mechanics (MM) simulations were carried out to obtain the optimized surface structures. Subsequently, a 5-FU drug molecule in its different forms was docked on top of different MCM-41 surfaces to understand the adsorption orientation and energetics. To further validate the results, more accurate quantum mechanical (QM) calculations were also carried out, and the energetics between the QM and MM calculations are found to be similar. All the substitutions (-NH2, -CN, -COOH) except the methyl substitution exhibited favorable interactions compared to the unsubstituted MCM-41 surface which was in accordance with the experimental observations. The release rate of 5-FU from MCM-41 and aminopropyl-substituted MCM-41 (MCM-NH2) was studied using molecular dynamics simulations which revealed that the release rate of 5-FU from the MCM-NH2 surface was slower compared to that of plain MCM-41. The detailed surface characteristics and the adsorption energies from the molecular simulations correlating the loading capacity and release are reported in here.

14.
Curr Pharm Des ; 28(15): 1258-1271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35319358

RESUMO

Nanotechnology is an innovative area of science that deals with things smaller than 100 nanometers. The influence of nanotechnology in the cosmetic industry is overwhelming since it can enhance the properties attained by the particles at the nano level, including color, solubility, etc, and can also promote the bioavailability of API. A plethora of nanomaterials can be employed in cosmetics, including organic and inorganic nanoparticles. Unlike orthodox carriers, they facilitate easy penetration of the product into the skin, thereby increasing the stability and allowing a controlled drug release so that they can permeate deeper into the skin and start revitalizing it. Nanomaterials rejuvenate the skin by forming an occlusive barrier to inhibit the loss of water from the skin's surface and thereby moisturize the skin. Nano-cosmeceuticals are used to provide better protection against UV radiation, facilitate deeper skin penetration, and give long-lasting effects. Although they still have some safety concerns, hence detailed characterization or risk assessments are required to fulfill the standard safety requirements. In this review, an attempt is made to make a brief overview of various nanocosmeceuticals skincare and anti-aging products.


Assuntos
Cosmecêuticos , Cosméticos , Envelhecimento , Cosmecêuticos/farmacologia , Cosméticos/farmacologia , Humanos , Pele , Higiene da Pele
15.
Mol Divers ; 26(5): 2793-2811, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35146638

RESUMO

Wnt signaling pathway is an evolutionarily conserved pathway responsible for neurogenesis, axon outgrowth, neuronal polarity, synapse formation, and maintenance. Downregulation of Wnt signaling has been found in patients with Alzheimer's disease (AD). Several experimental approaches to activate Wnt signaling pathway have proven to be beneficial in alleviating AD, which is one of the new therapeutic approaches for AD. The current study focuses on the computational structure-based virtual screening followed by the identification of potential phytomolecules targeting different markers of Wnt signaling like WIF1, DKK1, LRP6, GSK-3ß, and acetylcholine esterase. Initially, screening of 1924 compounds from the plant-based library of Zinc database was done for the selected five proteins using docking approach followed by MM-GBSA calculations. The top five hit molecules were identified for each protein. Based on docking score, and binding interactions, the top two hit molecules for each protein were selected as promising molecules for the molecular dynamic (MD) simulation study with the five proteins. Therefore, from this in silico based study, we report that Mangiferin could be a potential molecule targeting Wnt signaling pathway modulating the LRP6 activity, Baicalin for AChE activity, Chebulic acid for DKK1, ZINC103539689 for WIF1, and Morin for GSk-3ß protein. However, further validation of the activity is warranted based on in vivo and in vitro experiments for better understanding and strong claim. This study provides an in silico approach for the identification of modulators of the Wnt signaling pathway as a new therapeutic approach for AD.


Assuntos
Doença de Alzheimer , Simulação de Dinâmica Molecular , Acetilcolina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Esterases/metabolismo , Esterases/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Simulação de Acoplamento Molecular , Via de Sinalização Wnt , Zinco
16.
Chem Zvesti ; 76(2): 1063-1083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34690412

RESUMO

There is an urgent need for reliable cure and preventive measures in this hour of the outbreak of SARS-CoV-2. Siddha- and Ayurvedic-based classical formulations have antiviral properties and great potential therapeutic choice in this pandemic situation. In the current study, in silico-based analysis for the binding potential of phytoconstituents from the classical formulations suggested by the Ministry of Ayush (Kabasura Kudineer, Shwas Kuthar Rasa with Kantakari and pippali churna, Talisadi churna) to the interface domain of the SARS-CoV-2 receptor-binding domain and angiotensin-converting enzyme 2 was performed. Maestro software from Schrodinger and tools like Glide Docking, induced fit docking, MM-GBSA, molecular dynamics (MD) simulation, and thermal MM-GBSA was used to analyze the binding of protein PDB ID:6VW1 and the selected 133 ligands in comparison with drug molecules like favipiravir and ribavirin. QikProp-based ADMET evaluation of all the phytoconstituents found them nontoxic and with drug-like properties. Selection of top ten ligands was made based on docking score for further MM-GBSA analysis. After performing IFD of top five molecules iso-chlorogenic acid, taxiphyllin, vasicine, catechin and caffeic acid, MD simulation and thermal MM-GBSA were done. Iso-chlorogenic acid had formed more stable interaction with key residue among all phytoconstituents. Computational-based study has highlighted the potential of the many constituents of traditional medicine to interact with the SARS-CoV-2 RBD and ACE2, which might stop the viral entry into the cell. However, in vivo experiments and clinical trials are necessary for supporting this claim. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11696-021-01917-z.

17.
J Biomol Struct Dyn ; 40(23): 13218-13232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34606425

RESUMO

The endoplasmic reticulum (ER) is a cellular organelle responsible for the folding of proteins. When protein folding demand exceeds the folding capacity, cells trigger ER stress. ER-oxidoreductase 1α (ERO1α) is an ER stress component that controls oxidative folding protein. Upregulation of ERO1α was reported in distinct types of cancer including breast cancer and colon cancer. It was reported that deletion of ERO1 gene compromised cancer progression and cell proliferation in colon cancer. Thereby, ERO1α inhibition might be a clinically promising anti-cancer therapeutic target. In the present study, we conducted a virtual screening of 6,000 natural-product molecules obtained from Zinc database using a multistep docking approach with a crystal structure of human ERO1α. Our analyses from high throughput virtual screening revealed the top-ranked scores of 3000 molecules with glide scores of less than -4.0 kcal/mol. These molecules were further advanced to standard precision (SP) docking. The top 300 molecules of SP docking with glide scores ≤ -7.5 kcal/mol were chosen to undergo extra precision (XP) docking. Around 40 molecules that have conserved interactions with the binding site of ERO1α were ranked by the XP docking. Based on visual inspection, seven-candidate molecules that have high binding affinity scores and more molecular interactions were shortlisted. The dynamic stability of binding between the candidate molecules and ERO1α was characterized using 100 nanoseconds molecular dynamics simulation method. Two candidates exhibited strong and stable binding complexes with ERO1α. Collectively, these findings suggest that the identified molecules may serve as potential anti-cancer lead molecules subjected to further experimental validation. Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias do Colo , Oxirredutases , Humanos , Oxirredutases/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Retículo Endoplasmático , Neoplasias do Colo/metabolismo
18.
J Biomol Struct Dyn ; 40(20): 9577-9591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34080526

RESUMO

Alzheimer disease (AD) is the most common, irreversible and progressive form of dementia for which the exact pathology and cause are still not clear. At present, we are only confined to symptomatic treatment, and the lack of disease-modifying therapeutics is worrisome. Alteration of Wnt signaling has been linked to metabolic diseases as well as AD. The crosstalk between Canonical Wnt signaling and insulin signaling pathway has been widely studied and accepted from several clinical and preclinical studies that have proven the beneficial effect of antidiabetic medications in the case of memory and cognition loss. This structure-based in silico study was focused on exploring the link between the currently available FDA approved antidiabetic drugs and the Wnt signaling pathway. The library of antidiabetics was obtained from drug bank and was screened for their binding affinity with protein (PDB ID: 3S2K) LRP6, a coreceptor of the Wnt signaling pathway using GLIDE module of Schrodinger. The top molecules, with higher docking score, binding energy and stable interactions, were subjected to energy-based calculation using MMGBSA, followed by a molecular dynamics-based simulation study. Drugs of class α-glucosidase inhibitors and peroxisome proliferator-activated receptors (PPARs) agonists were found to have a strong affinity towards LRP6 proteins, highlighting the possibility of the modulation of Wnt signaling by antidiabetics as one of the possible mechanisms for use in AD. However, further experimental based in vitro and in vivo studies are warranted for verification and support.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Via de Sinalização Wnt , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas Wnt/metabolismo , Proteínas Wnt/farmacologia , Reposicionamento de Medicamentos , Hipoglicemiantes/farmacologia
19.
3 Biotech ; 11(12): 506, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34840927

RESUMO

The human Abl kinases comprise a family of proteins that are known to be key stimulus drivers in the signaling pathways modulating cell growth, cell survival, cell adhesion, and apoptosis. Recent collative studies have indicated the role of activation of Abl and Abl-related genes in solid tumors; further terming the Abl kinases as molecular switches which promote proliferation, tumorigenesis, and metastasis. The up-regulated Abl-kinase expression in colorectal cancer (CRC) and the role of Abl tyrosine kinase activity in the Matrigel invasion of CRC cells have cemented its significance in CRC advancement. Therefore, the requisite of identifying small molecules which serve as Abl selective inhibitors and designing anti-Abl therapies, particularly for CRC tumors, has driven this study. Curcumin has been touted as an effective inhibitor of cancer cells; however, it is limited by its physicochemical inadequacies. Hence, we have studied the behavior of heterocyclic derivatives of curcumin via computational tools such as pharmacophore-based virtual screening, molecular docking, free-energy binding, and ADME profiling. The most actively docked molecule, 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-carboxamide, was comparatively evaluated against Curcumin via molecular dynamics simulation using Desmond, Schrödinger. The study exhibited the improved stability of the derivative as compared to Curcumin in the tested protein pocket and displayed the interaction bonds with the contacted key amino acids. To further establish the claim, the derivatives were synthesized via the mechanism of cyclization of Curcumin and screened in vitro using SRB assay against human CRC cell line, HCT 116. The active derivative indicated an IC50 value of 5.85 µM, which was sevenfold lower as compared to Curcumin's IC50 of 35.40 µM. Hence, the results base the potential role of the curcumin derivative in modulating Abl-kinase activity and in turn may have potential therapeutic value as a lead for CRC therapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03051-9.

20.
Expert Opin Drug Deliv ; 18(11): 1687-1706, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34556001

RESUMO

INTRODUCTION: Nintedanib (N.T.B) is an orally administered tyrosine kinase inhibitor that has been approved recently by U.S.F.D.A for idiopathic pulmonary fibrosis (I.P.F) and systemic sclerosis-associated interstitial lung disease (S.Sc-I.L.D). N.T.B is also prescribed in COVID-19 patients associated with I.P.F. However, it has an extremely low bioavailability of around 4.7%, and hence, researchers are attempting to address this drawback by different approaches. AREAS COVERED: This review article focuses on enlisting all the formulation attempts explored by researchers to increase the bioavailability of N.T.B while also providing meaningful insight into the unexplored areas in formulation development, such as targeting of the lymphatic system and transdermal delivery. All the patents on the formulation development of N.T.B have also been summarized. EXPERT OPINION: N.T.B has the potential to act on multiple diseases that are still being discovered, but its extremely low bioavailability is a challenge that is to be dealt with for obtaining the full benefit. Few studies have been performed aiming at improving the bioavailability, but there are unexplored areas that can be used, a few of which are explained in this article. However, the ability to reproduce laboratory results when scaling up to the industry level is the only factor to be taken into consideration.


Assuntos
COVID-19 , Preparações Farmacêuticas , Humanos , Indóis , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA