Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Commun ; 14(1): 1416, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932083

RESUMO

Naturally occurring peptides with high membrane permeability often have ester bonds on their backbones. However, the impact of amide-to-ester substitutions on the membrane permeability of peptides has not been directly evaluated. Here we report the effect of amide-to-ester substitutions on the membrane permeability and conformational ensemble of cyclic peptides related to membrane permeation. Amide-to-ester substitutions are shown to improve the membrane permeability of dipeptides and a model cyclic hexapeptide. NMR-based conformational analysis and enhanced sampling molecular dynamics simulations suggest that the conformational transition of the cyclic hexapeptide upon membrane permeation is differently influenced by an amide-to-ester substitution and an amide N-methylation. The effect of amide-to-ester substitution on membrane permeability of other cyclic hexapeptides, cyclic octapeptides, and a cyclic nonapeptide is also investigated to examine the scope of the substitution. Appropriate utilization of amide-to-ester substitution based on our results will facilitate the development of membrane-permeable peptides.


Assuntos
Amidas , Peptídeos Cíclicos , Peptídeos Cíclicos/química , Metilação , Ésteres , Permeabilidade da Membrana Celular , Peptídeos/química , Permeabilidade
2.
J Chem Inf Model ; 61(11): 5601-5613, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34672629

RESUMO

The chameleonic behavior of cyclosporin A (CsA) was investigated through conformational ensembles employing multicanonical molecular dynamics simulations that could sample the cis and trans isomers of N-methylated amino acids; these assessments were conducted in explicit water, dimethyl sulfoxide, acetonitrile, methanol, chloroform, cyclohexane (CHX), and n-hexane (HEX) using AMBER ff03, AMBER10:EHT, AMBER12:EHT, and AMBER14:EHT force fields. The conformational details were discussed employing the free-energy landscapes (FELs) at T = 300 K; it was observed that the experimentally determined structures of CsA were only a part of the conformational space. Comparing the ROESY measurements in CHX-d12 and HEX-d14, the major conformations in those apolar solvents were essentially the same as that in CDCl3 except for the observation of some sidechain rotamers. The effects of the metal ions on the conformations, including the cis/trans isomerization, were also investigated. Based on the analysis of FELs, it was concluded that the AMBER ff03 force field best described the experimentally derived conformations, indicating that CsA intrinsically formed membrane-permeable conformations and that the metal ions might be the key to the cis/trans isomerization of N-methylated amino acids before binding a partner protein.


Assuntos
Ciclosporina , Simulação de Dinâmica Molecular , Conformação Molecular , Conformação Proteica , Solventes , Água
3.
ACS Chem Biol ; 16(8): 1354-1364, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34251165

RESUMO

Cordyheptapeptide A is a lipophilic cyclic peptide from the prized Cordyceps fungal genus that shows potent cytotoxicity in multiple cancer cell lines. To better understand the bioactivity and physicochemical properties of cordyheptapeptide A with the ultimate goal of identifying its cellular target, we developed a solid-phase synthesis of this multiply N-methylated cyclic heptapeptide which enabled rapid access to both side chain- and backbone-modified derivatives. Removal of one of the backbone amide N-methyl (N-Me) groups maintained bioactivity, while membrane permeability was also preserved due to the formation of a new intramolecular hydrogen bond in a low dielectric solvent. Based on its cytotoxicity profile in the NCI-60 cell line panel, as well as its phenotype in a microscopy-based cytological assay, we hypothesized that cordyheptapeptide was acting on cells as a protein synthesis inhibitor. Further studies revealed the molecular target of cordyheptapeptide A to be the eukaryotic translation elongation factor 1A (eEF1A), a target shared by other lipophilic cyclic peptide natural products. This work offers a strategy to study and improve cyclic peptide natural products while highlighting the ability of these lipophilic compounds to effectively inhibit intracellular disease targets.


Assuntos
Antineoplásicos/farmacologia , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/síntese química , Técnicas de Síntese em Fase Sólida , Relação Estrutura-Atividade
4.
J Am Chem Soc ; 143(2): 705-714, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33381960

RESUMO

Constrained, membrane-permeable peptides offer the possibility of engaging challenging intracellular targets. Structure-permeability relationships have been extensively studied in cyclic peptides whose backbones are cyclized from head to tail, like the membrane permeable and orally bioavailable natural product cyclosporine A. In contrast, the physicochemical properties of lariat peptides, which are cyclized from one of the termini onto a side chain, have received little attention. Many lariat peptide natural products exhibit interesting biological activities, and some, such as griselimycin and didemnin B, are membrane permeable and have intracellular targets. To investigate the structure-permeability relationships in the chemical space exemplified by these natural products, we generated a library of scaffolds using stable isotopes to encode stereochemistry and determined the passive membrane permeability of over 1000 novel lariat peptide scaffolds with molecular weights around 1000. Many lariats were surprisingly permeable, comparable to many known orally bioavailable drugs. Passive permeability was strongly dependent on N-methylation, stereochemistry, and ring topology. A variety of structure-permeability trends were observed including a relationship between alternating stereochemistry and high permeability, as well as a set of highly permeable consensus sequences. For the first time, robust structure-permeability relationships are established in synthetic lariat peptides exceeding 1000 compounds.


Assuntos
Peptídeos/química , Permeabilidade da Membrana Celular , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos/síntese química
5.
J Chem Inf Model ; 59(6): 2952-2963, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31042375

RESUMO

Conformational ensembles of eight cyclic hexapeptide diastereomers in explicit cyclohexane, chloroform, and water were analyzed by multicanonical molecular dynamics (McMD) simulations. Free-energy landscapes (FELs) for each compound and solvent were obtained from the molecular shapes and principal component analysis at T = 300 K; detailed analysis of the conformational ensembles and flexibility of the FELs revealed that permeable compounds have different structural profiles even for a single stereoisomeric change. The average solvent-accessible surface area (SASA) in cyclohexane showed excellent correlation with the cell permeability, whereas this correlation was weaker in chloroform. The average SASA in water correlated with the aqueous solubility. The average polar surface area did not correlate with cell permeability in these solvents. A possible strategy for designing permeable cyclic peptides from FELs obtained from McMD simulations is proposed.


Assuntos
Permeabilidade da Membrana Celular , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Conformação Proteica , Estereoisomerismo , Termodinâmica
6.
J Med Chem ; 61(24): 11169-11182, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30395703

RESUMO

As drug discovery moves increasingly toward previously "undruggable" targets such as protein-protein interactions, lead compounds are becoming larger and more lipophilic. Although increasing lipophilicity can improve membrane permeability, it can also incur serious liabilities, including poor water solubility, increased toxicity, and faster metabolic clearance. Here we introduce a new efficiency metric, especially relevant to "beyond rule of 5" molecules, that captures, in a simple, unitless value, these opposing effects of lipophilicity on molecular properties. Lipophilic permeability efficiency (LPE) is defined as log D7.4dec/w - mlipocLogP + bscaffold, where log D7.4dec/w is the experimental decadiene-water distribution coefficient (pH 7.4), cLogP is the calculated octanol-water partition coefficient, and mlipo and bscaffold are scaling factors to standardize LPE values across different cLogP metrics and scaffolds. Using a variety of peptidic and nonpeptidic macrocycle drugs, we show that LPE provides a functional assessment of the efficiency with which a compound achieves passive membrane permeability at a given lipophilicity.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Preparações Farmacêuticas/química , Relação Estrutura-Atividade , 1-Octanol/química , Ciclosporinas/química , Ciclosporinas/farmacocinética , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Solubilidade , Água/química
7.
Curr Opin Chem Biol ; 38: 141-147, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28570865

RESUMO

As interest in protein-protein interactions and other previously-undruggable targets increases, medicinal chemists are returning to natural products for design inspiration toward molecules that transcend the paradigm of small molecule drugs. These compounds, especially peptides, often have poor ADME properties and thus require a more nuanced understanding of structure-property relationships to achieve desirable oral bioavailability. Although there have been few clinical successes in this chemical space to date, recent work has identified opportunities to introduce favorable physicochemical properties to peptidic macrocycles that maintain activity and oral bioavailability.


Assuntos
Produtos Biológicos/farmacocinética , Terapia de Alvo Molecular/métodos , Peptídeos Cíclicos/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Produtos Biológicos/administração & dosagem , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Humanos , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Permeabilidade
8.
ACS Med Chem Lett ; 7(8): 757-61, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27563399

RESUMO

Cyclic peptide (CP) natural products provide useful model systems for mapping "beyond-Rule-of-5" (bRo5) space. We identified the phepropeptins as natural product CPs with potential cell permeability. Synthesis of the phepropeptins and epimeric analogues revealed much more rapid cellular permeability for the natural stereochemical pattern. Despite being more cell permeable, the natural compounds exhibited similar aqueous solubility as the corresponding epimers, a phenomenon explained by solvent-dependent conformational flexibility among the natural compounds. When analyzing the polarity of the solution structures we found that neither the number of hydrogen bonds nor the total polar surface area accurately represents the solvation energies of the high and low dielectric conformations. This work adds to a growing number of natural CPs whose solvent-dependent conformational behavior allows for a balance between aqueous solubility and cell permeability, highlighting structural flexibility as an important consideration in the design of molecules in bRo5 chemical space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA