Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 366(2): 163-71, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22542760

RESUMO

Neuronal circuit development and function require proper synapse formation and maintenance. Genetic screens are one powerful method to identify the mechanisms shaping synaptic development and stability. However, genes with essential roles in non-neural tissues may be missed in traditional loss-of-function screens. In an effort to circumvent this limitation, we used neuron-specific RNAi knock down in Drosophila and assayed the formation, growth, and maintenance of the neuromuscular junction (NMJ). We examined 1970 Drosophila genes, each of which has a conserved ortholog in mammalian genomes. Knock down of 158 genes in post-mitotic neurons led to abnormalities in the neuromuscular system, including misapposition of active zone components opposite postsynaptic glutamate receptors, synaptic terminal overgrowth and undergrowth, abnormal accumulation of synaptic material within the axon, and retraction of synaptic terminals from their postsynaptic targets. Bioinformatics analysis demonstrates that genes with overlapping annotated function are enriched within the hits for each phenotype, suggesting that the shared biological function is important for that aspect of synaptic development. For example, genes for proteasome subunits and mitotic spindle organizers are enriched among the genes whose knock down leads to defects in synaptic apposition and NMJ stability. Such genes play essential roles in all cells, however the use of tissue- and temporally-restricted RNAi indicates that the proteasome and mitotic spindle organizers participate in discrete aspects of synaptic development. In addition to identifying functional classes of genes shaping synaptic development, this screen also identifies candidate genes whose role at the synapse can be validated by traditional loss-of-function analysis. We present one such example, the dynein-interacting protein NudE, and demonstrate that it is required for proper axonal transport and synaptic maintenance. Thus, this screen has identified both functional classes of genes as well as individual candidate genes that are critical for synaptic development and will be a useful resource for subsequent mechanistic analysis of synapse formation and maintenance.


Assuntos
Drosophila/genética , Genes Controladores do Desenvolvimento , Interferência de RNA , Sinapses/fisiologia , Animais , Drosophila/embriologia , Drosophila/fisiologia , Técnicas de Silenciamento de Genes , Receptores de Glutamato/fisiologia , Transmissão Sináptica/fisiologia
2.
J Neurosci ; 32(15): 5054-61, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22496551

RESUMO

Axonal degeneration is a molecular self-destruction cascade initiated following traumatic, toxic, and metabolic insults. Its mechanism underlies a number of disorders including hereditary and diabetic neuropathies and the neurotoxic side effects of chemotherapy drugs. Molecules that promote axonal degeneration could represent potential targets for therapy. To identify such molecules, we designed a screening platform based on intoxication of Drosophila larvae with paclitaxel (taxol), a chemotherapeutic agent that causes neuropathy in cancer patients. In Drosophila, taxol treatment causes swelling, fragmentation, and loss of axons in larval peripheral nerves. This axonal loss is not due to apoptosis of neurons. Taxol-induced axonal degeneration in Drosophila shares molecular execution mechanisms with vertebrates, including inhibition by both NMNAT (nicotinamide mononucleotide adenylyltransferase) expression and loss of wallenda/DLK (dual leucine zipper kinase). In a pilot RNAi-based screen we found that knockdown of retinophilin (rtp), which encodes a MORN (membrane occupation and recognition nexus) repeat-containing protein, protects axons from degeneration in the presence of taxol. Loss-of-function mutants of rtp replicate this axonal protection. Knockdown of rtp also delays axonal degeneration in severed olfactory axons. We demonstrate that the mouse ortholog of rtp, MORN4, promotes axonal degeneration in mouse sensory axons following axotomy, illustrating conservation of function. Hence, this new model can identify evolutionarily conserved genes that promote axonal degeneration, and so could identify candidate therapeutic targets for a wide-range of axonopathies.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Axônios/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Degeneração Neural/genética , Síndromes Neurotóxicas/genética , Paclitaxel/toxicidade , Animais , Antineoplásicos Fitogênicos/efeitos adversos , Apoptose/fisiologia , Axônios/ultraestrutura , Modelos Animais de Doenças , Drosophila , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Imuno-Histoquímica , Larva , Camundongos , Microscopia Confocal , Degeneração Neural/fisiopatologia , Síndromes Neurotóxicas/fisiopatologia , Paclitaxel/efeitos adversos , Nervos Periféricos/patologia , Nervos Periféricos/ultraestrutura , Interferência de RNA
3.
Proc Natl Acad Sci U S A ; 109(18): E1072-81, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22493244

RESUMO

Autophagy is a self-degradative process in which cellular material is enclosed within autophagosomes and trafficked to lysosomes for degradation. Autophagosomal biogenesis is well described; however mechanisms controlling the growth and ultimate size of autophagosomes are unclear. Here we demonstrate that the Drosophila membrane protein Ema is required for the growth of autophagosomes. In an ema mutant, autophagosomes form in response to starvation and developmental cues, and these autophagosomes can mature into autolysosomes; however the autophagosomes are very small, and autophagy is impaired. In fat body cells, Ema localizes to the Golgi complex and is recruited to the membrane of autophagosomes in response to starvation. The Drosophila Golgi protein Lva also is recruited to the periphery of autophagosomes in response to starvation, and this recruitment requires ema. Therefore, we propose that Golgi is a membrane source for autophagosomal growth and that Ema facilitates this process. Clec16A, the human ortholog of Ema, is a candidate autoimmune susceptibility locus. Expression of Clec16A can rescue the autophagosome size defect in the ema mutant, suggesting that regulation of autophagosome morphogenesis may be a fundamental function of this gene family.


Assuntos
Proteínas de Drosophila/fisiologia , Lectinas Tipo C/fisiologia , Proteínas de Transporte de Monossacarídeos/fisiologia , Animais , Autofagia/genética , Autofagia/fisiologia , Drosophila/citologia , Drosophila/genética , Drosophila/fisiologia , Proteínas de Drosophila/genética , Endossomos/fisiologia , Corpo Adiposo/citologia , Corpo Adiposo/fisiologia , Genes de Insetos , Complexo de Golgi/fisiologia , Humanos , Lectinas Tipo C/genética , Lisossomos/fisiologia , Fusão de Membrana/fisiologia , Microscopia Eletrônica de Transmissão , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Fagossomos/fisiologia , Fagossomos/ultraestrutura
4.
Dev Neurobiol ; 72(9): 1229-42, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22021126

RESUMO

Synaptic target selection is critical for establishing functional neuronal circuits. The mechanisms regulating target selection remain incompletely understood. We describe a role for the EGF receptor and its ligand Gurken in target selection of octopaminergic Type II neurons in the Drosophila neuromuscular system. Mutants in happyhour, a regulator of EGFR signaling, form ectopic Type II neuromuscular junctions. These ectopic innervations are due to inappropriate target selection. We demonstrate that EGFR signaling is necessary and sufficient to inhibit synaptic target selection by these octopaminergic Type II neurons, and that the EGFR ligand Gurken is the postsynaptic, muscle-derived repulsive cue. These results identify a new pathway mediating cell-type and branch-specific synaptic repulsion, a novel role for EGFR signaling in synaptic target selection, and an unexpected role for Gurken as a muscle-secreted repulsive ligand.


Assuntos
Proteínas de Drosophila/fisiologia , Receptores ErbB/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Fator de Crescimento Transformador alfa/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Fator de Crescimento Transformador alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA