Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Comput Biol Med ; 182: 109197, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39353298

RESUMO

Chemokines and their receptors form a complex interaction network, crucial for precise leukocyte positioning and trafficking. In cancer, they promote malignant cell proliferation and survival but are also critical for immune cell infiltration in the tumor microenvironment. Glioblastoma (GBM) is the most common and lethal brain tumor, characterized by an immunosuppressive TME, with restricted immune cell infiltration. A better understanding of chemokine-receptor interactions is therefore essential for improving tumor immunogenicity. In this study, we assessed the expression of all human chemokines in adult-type diffuse gliomas, with particular focus on GBM, based on patient-derived samples. Publicly available bulk RNA sequencing datasets allowed us to identify the chemokines most abundantly expressed in GBM, with regard to disease severity and across different tumor subregions. To gain insight into the chemokines-receptor network at the single cell resolution, we explored GBmap, a curated resource integrating multiple scRNAseq datasets from different published studies. Our study constitutes the first patient-based handbook highlighting the relevant chemokine-receptor crosstalks, which are of significant interest in the perspective of a therapeutic modulation of the TME in GBM.

2.
Heliyon ; 10(18): e37792, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315158

RESUMO

Background: Epidemiological studies suggest that metformin reduces the risk of developing several types of cancer, including gliomas, and improves the overall survival in cancer patients. Nevertheless, while the effect of metformin on cancer cells has been extensively studied, its impact on other components of the tumour microenvironment, such as macrophages, is less understood. Results: Metformin-treated mouse bone marrow cells differentiate into spindle-shaped macrophages exhibiting increased phagocytic activity and tumour cell cytotoxicity coupled with modulated expression of co-stimulatory molecules displaying reduced sensitivity to inflammatory cues compared with untreated cells. Transcriptional analyses of metformin-treated mouse bone marrow-derived macrophages show decreased expression levels of pro-tumour genes, including Tgfbi and Il1ß, related to enhanced mTOR/HIF1α signalling and metabolic rewiring towards glycolysis. Significance: Our study provides novel insights into the immunomodulatory properties of metformin in macrophages and its potential application in preventing tumour onset and in cancer immunotherapy.

3.
J Neuroinflammation ; 21(1): 174, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014482

RESUMO

BACKGROUND: Specific microglia responses are thought to contribute to the development and progression of neurodegenerative diseases, including Parkinson's disease (PD). However, the phenotypic acquisition of microglial cells and their role during the underlying neuroinflammatory processes remain largely elusive. Here, according to the multiple-hit hypothesis, which stipulates that PD etiology is determined by a combination of genetics and various environmental risk factors, we investigate microglial transcriptional programs and morphological adaptations under PARK7/DJ-1 deficiency, a genetic cause of PD, during lipopolysaccharide (LPS)-induced inflammation. METHODS: Using a combination of single-cell RNA-sequencing, bulk RNA-sequencing, multicolor flow cytometry and immunofluorescence analyses, we comprehensively compared microglial cell phenotypic characteristics in PARK7/DJ-1 knock-out (KO) with wildtype littermate mice following 6- or 24-h intraperitoneal injection with LPS. For translational perspectives, we conducted corresponding analyses in human PARK7/DJ-1 mutant induced pluripotent stem cell (iPSC)-derived microglia and murine bone marrow-derived macrophages (BMDMs). RESULTS: By excluding the contribution of other immune brain resident and peripheral cells, we show that microglia acutely isolated from PARK7/DJ-1 KO mice display a distinct phenotype, specially related to type II interferon and DNA damage response signaling, when compared with wildtype microglia, in response to LPS. We also detected discrete signatures in human PARK7/DJ-1 mutant iPSC-derived microglia and BMDMs from PARK7/DJ-1 KO mice. These specific transcriptional signatures were reflected at the morphological level, with microglia in LPS-treated PARK7/DJ-1 KO mice showing a less amoeboid cell shape compared to wildtype mice, both at 6 and 24 h after acute inflammation, as also observed in BMDMs. CONCLUSIONS: Taken together, our results show that, under inflammatory conditions, PARK7/DJ-1 deficiency skews microglia towards a distinct phenotype characterized by downregulation of genes involved in type II interferon signaling and a less prominent amoeboid morphology compared to wildtype microglia. These findings suggest that the underlying oxidative stress associated with the lack of PARK7/DJ-1 affects microglia neuroinflammatory responses, which may play a causative role in PD onset and progression.


Assuntos
Inflamação , Lipopolissacarídeos , Camundongos Knockout , Microglia , Proteína Desglicase DJ-1 , Animais , Proteína Desglicase DJ-1/deficiência , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos dos fármacos , Camundongos , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/farmacologia , Inflamação/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/genética , Humanos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/genética
4.
Bioinform Adv ; 4(1): vbae102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027644

RESUMO

Motivation: Deciphering molecular signals from omics data helps understanding cellular processes and disease progression. Effective algorithms for extracting these signals are essential, with a strong emphasis on robustness and reproducibility. Results: R/Bioconductor package consICA implements consensus independent component analysis (ICA)-a data-driven deconvolution method to decompose heterogeneous omics data and extract features suitable for patient stratification and multimodal data integration. The method separates biologically relevant molecular signals from technical effects and provides information about the cellular composition and biological processes. Build-in annotation, survival analysis, and report generation provide useful tools for the interpretation of extracted signals. The implementation of parallel computing in the package ensures efficient analysis using modern multicore systems. The package offers a reproducible and efficient data-driven solution for the analysis of complex molecular profiles, with significant implications for cancer research. Availability and implementation: The package is implemented in R and available under MIT license at Bioconductor (https://bioconductor.org/packages/consICA) or at GitHub (https://github.com/biomod-lih/consICA).

5.
Genome Med ; 16(1): 51, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566128

RESUMO

BACKGROUND: A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. METHODS: Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry, and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. RESULTS: We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. CONCLUSIONS: Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Microglia/metabolismo , Ecossistema , Xenoenxertos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Fenótipo , Modelos Animais de Doenças , Células Dendríticas/metabolismo , Microambiente Tumoral/genética
6.
Heliyon ; 10(5): e27515, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38562501

RESUMO

We provide in this paper a comprehensive comparison of various transfer learning strategies and deep learning architectures for computer-aided classification of adult-type diffuse gliomas. We evaluate the generalizability of out-of-domain ImageNet representations for a target domain of histopathological images, and study the impact of in-domain adaptation using self-supervised and multi-task learning approaches for pretraining the models using the medium-to-large scale datasets of histopathological images. A semi-supervised learning approach is furthermore proposed, where the fine-tuned models are utilized to predict the labels of unannotated regions of the whole slide images (WSI). The models are subsequently retrained using the ground-truth labels and weak labels determined in the previous step, providing superior performance in comparison to standard in-domain transfer learning with balanced accuracy of 96.91% and F1-score 97.07%, and minimizing the pathologist's efforts for annotation. Finally, we provide a visualization tool working at WSI level which generates heatmaps that highlight tumor areas; thus, providing insights to pathologists concerning the most informative parts of the WSI.

7.
Sci Rep ; 14(1): 5898, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467724

RESUMO

Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Feminino , Masculino , Animais , Camundongos , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/genética , Influenza Humana/metabolismo , Transcriptoma , Estresse Psicológico/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Corticosterona
8.
Allergy ; 79(6): 1419-1439, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38263898

RESUMO

Epidemiological studies have explored the relationship between allergic diseases and cancer risk or prognosis in AllergoOncology. Some studies suggest an inverse association, but uncertainties remain, including in IgE-mediated diseases and glioma. Allergic disease stems from a Th2-biased immune response to allergens in predisposed atopic individuals. Allergic disorders vary in phenotype, genotype and endotype, affecting their pathophysiology. Beyond clinical manifestation and commonly used clinical markers, there is ongoing research to identify novel biomarkers for allergy diagnosis, monitoring, severity assessment and treatment. Gliomas, the most common and diverse brain tumours, have in parallel undergone changes in classification over time, with specific molecular biomarkers defining glioma subtypes. Gliomas exhibit a complex tumour-immune interphase and distinct immune microenvironment features. Immunotherapy and targeted therapy hold promise for primary brain tumour treatment, but require more specific and effective approaches. Animal studies indicate allergic airway inflammation may delay glioma progression. This collaborative European Academy of Allergy and Clinical Immunology (EAACI) and European Association of Neuro-Oncology (EANO) Position Paper summarizes recent advances and emerging biomarkers for refined allergy and adult-type diffuse glioma classification to inform future epidemiological and clinical studies. Future research is needed to enhance our understanding of immune-glioma interactions to ultimately improve patient prognosis and survival.


Assuntos
Biomarcadores , Glioma , Hipersensibilidade , Humanos , Glioma/imunologia , Glioma/etiologia , Glioma/diagnóstico , Hipersensibilidade/diagnóstico , Hipersensibilidade/imunologia , Hipersensibilidade/etiologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/etiologia , Suscetibilidade a Doenças , Animais
9.
J Extracell Vesicles ; 12(10): e12363, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37759347

RESUMO

Melanoma has the highest propensity of all cancers to metastasize to the brain with a large percentage of late-stage patients developing metastases in the central nervous system (CNS). It is well known that metastasis establishment, cell survival, and progression are affected by tumour-host cell interactions where changes in the host cellular compartments likely play an important role. In this context, miRNAs transferred by tumour derived extracellular vesicles (EVs) have previously been shown to create a favourable tumour microenvironment. Here, we show that miR-146a-5p is highly expressed in human melanoma brain metastasis (MBM) EVs, both in MBM cell lines as well as in biopsies, thereby modulating the brain metastatic niche. Mechanistically, miR-146a-5p was transferred to astrocytes via EV delivery and inhibited NUMB in the Notch signalling pathway. This resulted in activation of tumour-promoting cytokines (IL-6, IL-8, MCP-1 and CXCL1). Brain metastases were significantly reduced following miR-146a-5p knockdown. Corroborating these findings, miR-146a-5p inhibition led to a reduction of IL-6, IL-8, MCP-1 and CXCL1 in astrocytes. Following molecular docking analysis, deserpidine was identified as a functional miR-146a-5p inhibitor, both in vitro and in vivo. Our results highlight the pro-metastatic function of miR-146a-5p in EVs and identifies deserpidine for targeted adjuvant treatment.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Melanoma , MicroRNAs , Humanos , Astrócitos , Interleucina-6 , Interleucina-8 , Simulação de Acoplamento Molecular , MicroRNAs/genética , Microambiente Tumoral
10.
Cell Rep ; 42(7): 112696, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37379213

RESUMO

Treatment options for patients with NRAS-mutant melanoma are limited and lack an efficient targeted drug combination that significantly increases overall and progression-free survival. In addition, targeted therapy success is hampered by the inevitable emergence of drug resistance. A thorough understanding of the molecular processes driving cancer cells' escape mechanisms is crucial to tailor more efficient follow-up therapies. We performed single-cell RNA sequencing of NRAS-mutant melanoma treated with MEK1/2 plus CDK4/6 inhibitors to decipher transcriptional transitions during the development of drug resistance. Cell lines resuming full proliferation (FACs [fast-adapting cells]) and cells that became senescent (SACs [slow-adapting cells]) over prolonged treatment were identified. The early drug response was characterized by transitional states involving increased ion signaling, driven by upregulation of the ATP-gated ion channel P2RX7. P2RX7 activation was associated with improved therapy responses and, in combination with targeted drugs, could contribute to the delayed onset of acquired resistance in NRAS-mutant melanoma.


Assuntos
Melanoma , Transcriptoma , Humanos , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Receptores Purinérgicos P2X7/metabolismo , Proteínas de Membrana/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
11.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372972

RESUMO

By generating protein diversity, alternative splicing provides an important oncogenic pathway. Isocitrate dehydrogenase (IDH) 1 and 2 mutations and 1p/19q co-deletion have become crucial for the novel molecular classification of diffuse gliomas, which also incorporates DNA methylation profiling. In this study, we have carried out a bioinformatics analysis to examine the impact of the IDH mutation, as well as the 1p/19q co-deletion and the glioma CpG island methylator phenotype (G-CIMP) status on alternative splicing in a cohort of 662 diffuse gliomas from The Cancer Genome Atlas (TCGA). We identify the biological processes and molecular functions affected by alternative splicing in the various glioma subgroups and provide evidence supporting the important contribution of alternative splicing in modulating epigenetic regulation in diffuse gliomas. Targeting the genes and pathways affected by alternative splicing might provide novel therapeutic opportunities against gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Epigênese Genética , Processamento Alternativo , Glioma/genética , Glioma/terapia , Mutação , Aberrações Cromossômicas , Fenótipo , Isocitrato Desidrogenase/genética
12.
Blood ; 141(26): 3166-3183, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37084385

RESUMO

Dysregulation of messenger RNA (mRNA) translation, including preferential translation of mRNA with complex 5' untranslated regions such as the MYC oncogene, is recognized as an important mechanism in cancer. Here, we show that both human and murine chronic lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed in samples from patients with CLL and cell lines treated with FL3 revealed the decreased translation of the MYC oncogene and of proteins involved in cell cycle and metabolism. Furthermore, inhibiting translation induced a proliferation arrest and a rewiring of MYC-driven metabolism. Interestingly, contrary to other models, the RAS-RAF-(PHBs)-MAPK pathway is neither impaired by FL3 nor implicated in translation regulation in CLL cells. Here, we rather show that PHBs are directly associated with the eukaryotic initiation factor (eIF)4F translation complex and are targeted by FL3. Knockdown of PHBs resembled FL3 treatment. Importantly, inhibition of translation controlled CLL development in vivo, either alone or combined with immunotherapy. Finally, high expression of translation initiation-related genes and PHBs genes correlated with poor survival and unfavorable clinical parameters in patients with CLL. Overall, we demonstrated that translation inhibition is a valuable strategy to control CLL development by blocking the translation of several oncogenic pathways including MYC. We also unraveled a new and direct role of PHBs in translation initiation, thus creating new therapeutic opportunities for patients with CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Camundongos , Animais , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Fator de Iniciação 4F em Eucariotos/genética , Proibitinas , Genes myc , RNA Mensageiro/genética
13.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36945572

RESUMO

Background: A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. Methods: Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA-sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. Results: We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. Conclusions: Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.

14.
Allergy ; 78(3): 682-696, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36210648

RESUMO

BACKGROUND: Numerous patient-based studies have highlighted the protective role of immunoglobulin E-mediated allergic diseases on glioblastoma (GBM) susceptibility and prognosis. However, the mechanisms behind this observation remain elusive. Our objective was to establish a preclinical model able to recapitulate this phenomenon and investigate the role of immunity underlying such protection. METHODS: An immunocompetent mouse model of allergic airway inflammation (AAI) was initiated before intracranial implantation of mouse GBM cells (GL261). RAG1-KO mice served to assess tumor growth in a model deficient for adaptive immunity. Tumor development was monitored by MRI. Microglia were isolated for functional analyses and RNA-sequencing. Peripheral as well as tumor-associated immune cells were characterized by flow cytometry. The impact of allergy-related microglial genes on patient survival was analyzed by Cox regression using publicly available datasets. RESULTS: We found that allergy establishment in mice delayed tumor engraftment in the brain and reduced tumor growth resulting in increased mouse survival. AAI induced a transcriptional reprogramming of microglia towards a pro-inflammatory-like state, uncovering a microglia gene signature, which correlated with limited local immunosuppression in glioma patients. AAI increased effector memory T-cells in the circulation as well as tumor-infiltrating CD4+ T-cells. The survival benefit conferred by AAI was lost in mice devoid of adaptive immunity. CONCLUSION: Our results demonstrate that AAI limits both tumor take and progression in mice, providing a preclinical model to study the impact of allergy on GBM susceptibility and prognosis, respectively. We identify a potentiation of local and adaptive systemic immunity, suggesting a reciprocal crosstalk that orchestrates allergy-induced immune protection against GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Hipersensibilidade , Camundongos , Animais , Glioblastoma/genética , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Microglia/patologia , Hipersensibilidade/patologia , Camundongos Endogâmicos C57BL
15.
Blood Cancer Discov ; 4(1): 54-77, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36108149

RESUMO

Small extracellular vesicle (sEV, or exosome) communication among cells in the tumor microenvironment has been modeled mainly in cell culture, whereas their relevance in cancer pathogenesis and progression in vivo is less characterized. Here we investigated cancer-microenvironment interactions in vivo using mouse models of chronic lymphocytic leukemia (CLL). sEVs isolated directly from CLL tissue were enriched in specific miRNA and immune-checkpoint ligands. Distinct molecular components of tumor-derived sEVs altered CD8+ T-cell transcriptome, proteome, and metabolome, leading to decreased functions and cell exhaustion ex vivo and in vivo. Using antagomiRs and blocking antibodies, we defined specific cargo-mediated alterations on CD8+ T cells. Abrogating sEV biogenesis by Rab27a/b knockout dramatically delayed CLL pathogenesis. This phenotype was rescued by exogenous leukemic sEV or CD8+ T-cell depletion. Finally, high expression of sEV-related genes correlated with poor outcomes in CLL patients, suggesting sEV profiling as a prognostic tool. In conclusion, sEVs shape the immune microenvironment during CLL progression. SIGNIFICANCE: sEVs produced in the leukemia microenvironment impair CD8+ T-cell mediated antitumor immune response and are indispensable for leukemia progression in vivo in murine preclinical models. In addition, high expression of sEV-related genes correlated with poor survival and unfavorable clinical parameters in CLL patients. See related commentary by Zhong and Guo, p. 5. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Vesículas Extracelulares , Leucemia Linfocítica Crônica de Células B , Camundongos , Animais , Leucemia Linfocítica Crônica de Células B/genética , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Transcriptoma , Imunidade , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Microambiente Tumoral/genética
16.
BMJ Open ; 12(11): e062463, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414294

RESUMO

OBJECTIVE: To develop a vocal biomarker for fatigue monitoring in people with COVID-19. DESIGN: Prospective cohort study. SETTING: Predi-COVID data between May 2020 and May 2021. PARTICIPANTS: A total of 1772 voice recordings were used to train an AI-based algorithm to predict fatigue, stratified by gender and smartphone's operating system (Android/iOS). The recordings were collected from 296 participants tracked for 2 weeks following SARS-CoV-2 infection. PRIMARY AND SECONDARY OUTCOME MEASURES: Four machine learning algorithms (logistic regression, k-nearest neighbours, support vector machine and soft voting classifier) were used to train and derive the fatigue vocal biomarker. The models were evaluated based on the following metrics: area under the curve (AUC), accuracy, F1-score, precision and recall. The Brier score was also used to evaluate the models' calibrations. RESULTS: The final study population included 56% of women and had a mean (±SD) age of 40 (±13) years. Women were more likely to report fatigue (p<0.001). We developed four models for Android female, Android male, iOS female and iOS male users with a weighted AUC of 86%, 82%, 79%, 85% and a mean Brier Score of 0.15, 0.12, 0.17, 0.12, respectively. The vocal biomarker derived from the prediction models successfully discriminated COVID-19 participants with and without fatigue. CONCLUSIONS: This study demonstrates the feasibility of identifying and remotely monitoring fatigue thanks to voice. Vocal biomarkers, digitally integrated into telemedicine technologies, are expected to improve the monitoring of people with COVID-19 or Long-COVID. TRIAL REGISTRATION NUMBER: NCT04380987.


Assuntos
COVID-19 , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , COVID-19/diagnóstico , Estudos Prospectivos , Estudos de Coortes , SARS-CoV-2 , Biomarcadores , Fadiga/diagnóstico , Fadiga/etiologia , Síndrome de COVID-19 Pós-Aguda
17.
JMIR Med Inform ; 10(11): e35622, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36265042

RESUMO

BACKGROUND: The COVID-19 disease has multiple symptoms, with anosmia and ageusia being the most prevalent, varying from 75% to 95% and from 50% to 80% of infected patients, respectively. An automatic assessment tool for these symptoms will help monitor the disease in a fast and noninvasive manner. OBJECTIVE: We hypothesized that people with COVID-19 experiencing anosmia and ageusia had different voice features than those without such symptoms. Our objective was to develop an artificial intelligence pipeline to identify and internally validate a vocal biomarker of these symptoms for remotely monitoring them. METHODS: This study used population-based data. Participants were assessed daily through a web-based questionnaire and asked to register 2 different types of voice recordings. They were adults (aged >18 years) who were confirmed by a polymerase chain reaction test to be positive for COVID-19 in Luxembourg and met the inclusion criteria. Statistical methods such as recursive feature elimination for dimensionality reduction, multiple statistical learning methods, and hypothesis tests were used throughout this study. The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) Prediction Model Development checklist was used to structure the research. RESULTS: This study included 259 participants. Younger (aged <35 years) and female participants showed higher rates of ageusia and anosmia. Participants were aged 41 (SD 13) years on average, and the data set was balanced for sex (female: 134/259, 51.7%; male: 125/259, 48.3%). The analyzed symptom was present in 94 (36.3%) out of 259 participants and in 450 (27.5%) out of 1636 audio recordings. In all, 2 machine learning models were built, one for Android and one for iOS devices, and both had high accuracy-88% for Android and 85% for iOS. The final biomarker was then calculated using these models and internally validated. CONCLUSIONS: This study demonstrates that people with COVID-19 who have anosmia and ageusia have different voice features from those without these symptoms. Upon further validation, these vocal biomarkers could be nested in digital devices to improve symptom assessment in clinical practice and enhance the telemonitoring of COVID-19-related symptoms. TRIAL REGISTRATION: Clinicaltrials.gov NCT04380987; https://clinicaltrials.gov/ct2/show/NCT04380987.

18.
Open Forum Infect Dis ; 9(8): ofac397, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35983269

RESUMO

Background: "Long COVID" is characterized by a variety of symptoms and an important burden for affected people. Our objective was to describe long COVID symptomatology according to initial coronavirus disease 2019 (COVID-19) severity. Methods: Predi-COVID cohort study participants, recruited at the time of acute COVID-19 infection, completed a detailed 12-month symptom and quality of life questionnaire. Frequencies and co-occurrences of symptoms were assessed. Results: Among the 289 participants who fully completed the 12-month questionnaire, 59.5% reported at least 1 symptom, with a median of 6 symptoms. Participants with an initial moderate or severe acute illness declared more frequently 1 or more symptoms (82.6% vs 38.6%, P < .001) and had on average 6.8 more symptoms (95% confidence interval, 4.18-9.38) than initially asymptomatic participants who developed symptoms after the acute infection. Overall, 12.5% of the participants could not envisage coping with their symptoms in the long term. Frequently reported symptoms, such as neurological and cardiovascular symptoms, but also less frequent ones such as gastrointestinal symptoms, tended to cluster. Conclusions: Frequencies and burden of symptoms present 12 months after acute COVID-19 infection increased with the severity of the acute illness. Long COVID likely consists of multiple subcategories rather than a single entity. This work will contribute to the better understanding of long COVID and to the definition of precision health strategies. Clinical Trials Registration: NCT04380987.

20.
Bioinformatics ; 38(10): 2963-2964, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561190

RESUMO

SUMMARY: We developed BIODICA, an integrated computational environment for application of independent component analysis (ICA) to bulk and single-cell molecular profiles, interpretation of the results in terms of biological functions and correlation with metadata. The computational core is the novel Python package stabilized-ica which provides interface to several ICA algorithms, a stabilization procedure, meta-analysis and component interpretation tools. BIODICA is equipped with a user-friendly graphical user interface, allowing non-experienced users to perform the ICA-based omics data analysis. The results are provided in interactive ways, thus facilitating communication with biology experts. AVAILABILITY AND IMPLEMENTATION: BIODICA is implemented in Java, Python and JavaScript. The source code is freely available on GitHub under the MIT and the GNU LGPL licenses. BIODICA is supported on all major operating systems. URL: https://sysbio-curie.github.io/biodica-environment/.


Assuntos
Algoritmos , Software , Biologia Computacional/métodos , Metadados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA