Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39065680

RESUMO

The exploration of heterocyclic compounds and their fused analogs, featuring key pharmacophore fragments like pyridine, thiophene, pyrimidine, and triazine rings, is pivotal in medicinal chemistry. These compounds possess a wide array of biological activities, making them an intriguing area of study. The quest for new neurotropic drugs among derivatives of these heterocycles with pharmacophore groups remains a significant research challenge. The aim of this research work was to develop a synthesis method for new heterocyclic compounds, evaluate their neurotropic and neuroprotective activities, study histological changes, and perform docking analysis. Classical organic synthesis methods were used in the creation of novel heterocyclic systems containing pharmacophore rings. To evaluate the neurotropic activity of these synthesized compounds, a range of biological assays were employed. Docking analysis was conducted using various software packages and methodologies. The neuroprotective activity of compound 13 was tested in seizures with and without pentylenetetrazole (PTZ) administration. Histopathological examinations were performed in different experimental groups in the hippocampus and the entorhinal cortex. As a result of chemical reactions, 16 new, tetra- and pentacyclic heterocyclic compounds were obtained. The biologically studied compounds exhibited protection against PTZ seizures as well as some psychotropic effects. The biological assays evidenced that 13 of the 16 studied compounds showed a high anticonvulsant activity by antagonism with PTZ. The toxicity of the compounds was low. According to the results of the study of psychotropic activity, it was found that the selected compounds have a sedative effect, except compound 13, which exhibited activating behavior and antianxiety effects (especially compound 13). The studied compounds exhibited antidepressant effects, especially compound 13, which is similar to diazepam. Histopathological examination showed that compound 13 produced moderate changes in the brain and exhibited neuroprotective effects in the entorhinal cortex against PTZ-induced damage, reducing gliosis and neuronal loss. Docking studies revealed that out of 16 compounds, 3 compounds bound to the γ-aminobutyric acid type A (GABAA) receptor. Thus, the selected compounds demonstrated anticonvulsant, sedative, and activating behavior, and at the same time exhibited antianxiety and antidepressant effects. Compound 13 bound to the GABAA receptor and exhibited antianxiety, antidepressant, and neuroprotective effects in the entorhinal cortex against PTZ-induced changes.

2.
Molecules ; 26(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205930

RESUMO

BACKGROUND: Neurotic disturbances, anxiety, neurosis-like disorders, and stress situations are widespread. Benzodiazepine tranquillizers have been found to be among the most effective antianxiety drugs. The pharmacological action of benzodiazepines is due to their interaction with the supra-molecular membrane GABA-a-benzodiazepine receptor complex, linked to the Cl-ionophore. Benzodiazepines enhance GABA-ergic transmission and this has led to a study of the role of GABA in anxiety. The search for anxiolytics and anticonvulsive agents has involved glutamate-ergic, 5HT-ergic substances and neuropeptides. However, each of these well-known anxiolytics, anticonvulsants and cognition enhancers (nootropics) has repeatedly been reported to have many adverse side effects, therefore there is an urgent need to search for new drugs able to restore damaged cognitive functions without causing significant adverse reactions. OBJECTIVE: Considering the relevance of epilepsy diffusion in the world, we have addressed our attention to the discovery of new drugs in this field Thus our aim is the synthesis and study of new compounds with antiepileptic (anticonvulsant) and not only, activity. METHODS: For the synthesis of compounds classical organic methods were used and developed. For the evaluation of biological activity some anticonvulsant and psychotropic methods were used. RESULTS: As a result of multistep reactions 26 new, five-membered heterocyclic systems were obtained. PASS prediction of anticonvulsant activity was performed for the whole set of the designed molecules and probability to be active Pa values were ranging from 0.275 to 0.43. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures, anti-thiosemicarbazides effect as well as some psychotropic effect. The biological assays evidenced that some of the studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of compounds is low and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity it was found that the selected compounds have an activating behavior and anxiolytic effects on the models of "open field" and "elevated plus maze" (EPM). The data obtained indicate the anxiolytic (anti-anxiety) activity of the derivatives of pyrimidines, especially pronounced in compounds 6n, 6b, and 7c. The studied compounds increase the latent time of first immobilization on the model of "forced swimming" (FST) and exhibit some antidepressant effect similarly to diazepam. Docking studies revealed that compound 6k bound tightly in the active site of GABAA receptor with a value of the scoring function that estimates free energy of binding (ΔG) at -7.95 kcal/mol, while compound 6n showed the best docking score and seems to be dual inhibitor of SERT transporter as well as 5-HT1A receptor. CONCLUSIONS: Тhe selected compounds have an anticonvulsant, activating behavior and anxiolytic effects, at the same time exhibit some antidepressant effect.


Assuntos
Azepinas/administração & dosagem , Azepinas/síntese química , Pirimidinas/administração & dosagem , Pirimidinas/síntese química , Convulsões/tratamento farmacológico , Animais , Ansiolíticos/administração & dosagem , Ansiolíticos/síntese química , Ansiolíticos/química , Ansiolíticos/farmacologia , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Azepinas/química , Azepinas/farmacologia , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Pentilenotetrazol/efeitos adversos , Pirimidinas/química , Pirimidinas/farmacologia , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ratos , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
3.
Medchemcomm ; 10(8): 1399-1411, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31534657

RESUMO

8-Hydrazino derivatives of pyrano[3,4-c]pyridines and derivatives of the new heterocyclic system 3-thioxopyrano[3,4-c][1,2,4]triazolo[4,3-a]pyridines on the basis of methanesulfonates of pyrano[3,4-c]pyridinium were synthesized by optimization of a previously used method. Derivatives of alkylsulfonyl pyrano[3,4-c][1,2,4]triazolo[4,3-a]pyridines were also synthesized. All compounds were evaluated for their neurotropic activity. Among all the compounds tested for anticonvulsant activity by pentylenetetrazole and maximal electric shock seizure (MES) tests, six compounds (5a, 5b, 5e, 5g, 5j, and 5p) appeared to be active. These compounds were also evaluated for their anxiolytic as well as antidepressant activities using "open field", "elevated plus maze" (EPM), and "forced swimming" tests, respectively. It should be mentioned that compounds tested by the "rotating rod" method did not affect neuromuscular coordination. The most active compound appeared to be 5g in all tests. Docking studies of the most active compounds were performed on the GABAA receptor, SERT and 5-HT1A receptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA