Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Pharm ; 651: 123788, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185341

RESUMO

Exosomes are naturally derived information carriers that present interest as drug delivery systems. However, their vague cargo and isolation difficulties hinder their use in clinical practice. To overcome these limitations, we developed exosome-like nanoparticles, consisted of the main lipids of exosomes, using two distinct methods: thin-film hydration and 3D-printed microfluidics. Our novel microfluidic device, fabricated through digital light processing printing, demonstrated a favorable architecture to produce exosome-like nanoparticles. We compared these two techniques by analyzing the physicochemical characteristics (size, size distribution, and ζ-potential) of both unloaded and genistein-loaded exosome-like nanoparticles, using dynamic and electrophoretic light scattering. Our findings revealed that the presence of small lipophilic molecules, cholesterol and/or genistein, influenced the characteristics of the final formulations differently based on the development approach. Regardless of the initial differences of the formulations, all exosome-like nanoparticles, whether loaded with genistein or not, exhibited remarkable colloidal stability over time. Furthermore, an encapsulation efficiency of over 87% for genistein was achieved in all cases. Additionally, thermal analysis uncovered the presence of metastable phases within the membranes, which could impact the drug delivery efficiency. In summary, this study provides a comprehensive comparison between conventional and innovative methods for producing complex liposomal nanosystems, exemplified by exosome-like nanoparticles.


Assuntos
Exossomos , Nanopartículas , Microfluídica/métodos , Genisteína , Nanopartículas/química , Impressão Tridimensional
2.
Adv Exp Med Biol ; 1425: 575-589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37581831

RESUMO

Herein we present the modern issue of new health technologies that emerge in Medicine and Therapeutics, with regard to their development, regulatory framework, approval, and post-approval monitoring. The European law and legislation distinguish the various subcategories of health technologies in medicinal products, medical devices, biotechnological products, advanced therapy medicinal products, and nanomedicinal products. Each of these categories presents its own distinctive characteristics, based on principles that regard the development technology and intended therapeutic use, and, as a result, is defined by a unique regulatory framework inside the European legislation environment. New health technologies are a key of twenty-first-century knowledge, science, and economy and a part of society growth and economic development, while at the same time they present significant challenges, mainly through matters that regard their safety, efficacy, and value for the public. In this environment, the concept of complexity of living and artificial systems arises, as part of their nature, but also as a perspective that will give answers regarding their dynamic behavior, evolution, and overall quality.


Assuntos
Tecnologia Biomédica , Nanotecnologia , União Europeia
3.
J Funct Biomater ; 14(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37367260

RESUMO

Tannins are natural plant origin polyphenols that are promising compounds for pharmacological applications due to their strong and different biological activities, including antibacterial activity. Our previous studies demonstrated that sumac tannin, i.e., 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-ß-D-glucose (isolated from Rhus typhina L.), possesses strong antibacterial activity against different bacterial strains. One of the crucial factors of the pharmacological activity of tannins is their ability to interact with biomembranes, which may result in the penetration of these compounds into cells or the realization of their activity on the surface. The aim of the current work was to study the interactions of sumac tannin with liposomes as a simple model of the cellular membrane, which is widely used in studies focused on the explanation of the physicochemical nature of molecule-membrane interactions. Additionally, these lipid nanovesicles are very often investigated as nanocarriers for different types of biologically active molecules, such as antibiotics. In the frame of our study, using differential scanning calorimetry, zeta-potential, and fluorescence analysis, we have shown that 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-ß-D-glucose interacts strongly with liposomes and can be encapsulated inside them. A formulated sumac-liposome hybrid nanocomplex demonstrated much stronger antibacterial activity in comparison with pure tannin. Overall, by using the high affinity of sumac tannin to liposomes, new, functional nanobiomaterials with strong antibacterial activity against Gram-positive strains, such as S. aureus, S. epidermitis, and B. cereus, can be formulated.

4.
Colloids Surf B Biointerfaces ; 227: 113371, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37244201

RESUMO

One of the major limitations for the treatment of many diseases is an inability of drugs to cross the cell membrane barrier. Different kinds of carriers are being investigated to improve drug bioavailability. Among them, lipid or polymer-based systems are of special interest due to their biocompatibility. In our study, we combined dendritic and liposomal carriers and analysed the biochemical and biophysical properties of these formulations. Two preparation methods of Liposomal Locked-in Dendrimers (LLDs) systems have been established and compared. Carbosilane ruthenium metallodendrimer was complexed with an anti-cancer drug (doxorubicin) and locked in a liposomal structure, using both techniques. The LLDs systems formed by hydrophilic locking had more efficient transfection profiles and interacted with the erythrocyte membrane better than systems using the hydrophobic method. The results indicate these systems have improved transfection properties when compared to non-complexed components. The coating of dendrimers with lipids significantly reduced their hemotoxicity and cytotoxicity. The nanometric size, low polydispersity index and reduced positive zeta potential of such complexes made them attractive for future application in drug delivery. The formulations prepared by the hydrophobic locking protocol were not effective and will not be considered furthermore as prospective drug delivery systems. In contrast, the formulations formed by the hydrophilic loading method have shown promising results where the cytotoxicity of LLD systems with doxorubicin was more effective against cancer than normal cells.


Assuntos
Antineoplásicos , Dendrímeros , Neoplasias , Rutênio , Humanos , Dendrímeros/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Antineoplásicos/química , Doxorrubicina/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Lipídeos
5.
ACS Infect Dis ; 9(2): 342-364, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36706233

RESUMO

SQ109 is a tuberculosis drug candidate that has high potency against Mycobacterium tuberculosis and is thought to function at least in part by blocking cell wall biosynthesis by inhibiting the MmpL3 transporter. It also has activity against bacteria and protozoan parasites that lack MmpL3, where it can act as an uncoupler, targeting lipid membranes and Ca2+ homeostasis. Here, we synthesized 18 analogs of SQ109 and tested them against M. smegmatis, M. tuberculosis, M. abscessus, Bacillus subtilis, and Escherichia coli, as well as against the protozoan parasites Trypanosoma brucei, T. cruzi, Leishmania donovani, L. mexicana, and Plasmodium falciparum. Activity against the mycobacteria was generally less than with SQ109 and was reduced by increasing the size of the alkyl adduct, but two analogs were ∼4-8-fold more active than SQ109 against M. abscessus, including a highly drug-resistant strain harboring an A309P mutation in MmpL3. There was also better activity than found with SQ109 with other bacteria and protozoa. Of particular interest, we found that the adamantyl C-2 ethyl, butyl, phenyl, and benzyl analogs had 4-10× increased activity against P. falciparum asexual blood stages, together with low toxicity to a human HepG2 cell line, making them of interest as new antimalarial drug leads. We also used surface plasmon resonance to investigate the binding of inhibitors to MmpL3 and differential scanning calorimetry to investigate binding to lipid membranes. There was no correlation between MmpL3 binding and M. tuberculosis or M. smegmatis cell activity, suggesting that MmpL3 is not a major target in mycobacteria. However, some of the more active species decreased lipid phase transition temperatures, indicating increased accumulation in membranes, which is expected to lead to enhanced uncoupler activity.


Assuntos
Malária , Mycobacterium abscessus , Mycobacterium tuberculosis , Parasitos , Tuberculose , Animais , Humanos , Antituberculosos/farmacologia , Parasitos/metabolismo , Proteínas de Bactérias/metabolismo , Tuberculose/microbiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Lipídeos
6.
Biomater Adv ; 144: 213200, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442451

RESUMO

The technology of lipid nanoparticles has a long history in drug delivery, which begins with the discovery of liposomes by Alec D Bangham in the 1960s. Since then, numerous studies have been conducted on these systems, and several nanomedicinal products that utilize them have entered the market, with the latest being the COVID-19 vaccines. Despite their success, many aspects of their biophysical behavior are still under investigation. At the same time, their combination with other classes of biomaterials to create more advanced platforms is a promising endeavor. Herein, we developed mixed lipid-polymer nanoparticles with incorporated curcumin as a drug delivery system for therapy, and we studied its interactions with various biosystems. Initially, the nanoparticle physicochemical properties were investigated, where their size, size distribution, surface charge, morphology, drug incorporation and stability were assessed. The incorporation of the drug molecule was approximately 99.8 % for a formulated amount of 10 % by weight of the total membrane components and stable in due time. The association of the nanoparticles with human serum albumin and the effect that this brings upon their properties was studied by several biophysical techniques, including light scattering, thermal analysis and circular dichroism. As a biocompatibility assessment, interactions with erythrocyte membranes and hemolysis induced by the nanoparticles were also studied, with empty nanoparticles being more toxic than drug-loaded ones at high concentrations. Finally, interactions with bacterial membrane proteins of Staphylococcus aureus and the antibacterial effect of the nanoparticles were evaluated, where the effect of curcumin was improved when incorporated inside the nanoparticles. Overall, the developed mixed nanoparticles are promising candidates for the delivery of curcumin to infectious and other types of diseases.


Assuntos
COVID-19 , Curcumina , Nanopartículas , Humanos , Lipossomos , Curcumina/química , Curcumina/farmacologia , Polímeros , Antibacterianos , Vacinas contra COVID-19 , Nanopartículas/química , Lipídeos/química
7.
Molecules ; 27(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458617

RESUMO

Losartan potassium salt (LSR) is a well-known antihypertensive drug with proven beneficial effects on human health. Its formulation with the non-toxic 2-hydroxypropyl-ß-cyclodextrin (2-HP-ß-CD) could improve its pharmacological profile. Thus, its molecular interactions are studied using a combination of Differential Scanning Calorimetry (DSC), Nuclear Magnetic Resonance (NMR) and Molecular Dynamics (MD). First, its complexation is shown through Differential Scanning Calorimetry as lyophilization provided distinct thermal properties in comparison to the mixture. The complexation is further proved by utilizing the chemical shift changes in the complexation and T1 values. Furthermore, the reversible favorable complexation was shown by MD calculations. Such physical chemical properties provide evidence that this formulation must be further explored through biological experiments.


Assuntos
Anti-Hipertensivos , Losartan , 2-Hidroxipropil-beta-Ciclodextrina/química , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Varredura Diferencial de Calorimetria , Liofilização , Humanos , Derivados da Hipromelose , Losartan/química , Losartan/farmacologia , Solubilidade
8.
Int J Pharm ; 610: 121212, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34687816

RESUMO

While classic vaccines have proved greatly efficacious in eliminating serious infectious diseases, innovative vaccine platforms open a new pathway to overcome dangerous pandemics via the development of safe and effective formulations. Such platforms play a key role either as antigen delivery systems or as immune-stimulators that induce both innate and adaptive immune responses. Liposomes or lipid nanoparticles, virus-like particles, nanoemulsions, polymeric or inorganic nanoparticles, as well as viral vectors, all belong to the nanoscale and are the main categories of innovative vaccines that are currently on the market or in clinical and preclinical phases. In this paper, we review the above formulations used in vaccinology and we discuss their connection with the development of safe and effective prophylactic vaccines against SARS-CoV-2.


Assuntos
COVID-19 , Doenças Transmissíveis , Vacinas , Vacinas contra COVID-19 , Humanos , Lipossomos , Nanopartículas , Pandemias/prevenção & controle , SARS-CoV-2
9.
Colloids Surf B Biointerfaces ; 208: 112141, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34624599

RESUMO

Chimeric or mixed nanosystems belong to the class of advanced therapeutics. Their distinctive characteristic compared with other types of nanoparticles is that they combine two or more different classes of biomaterials. These platforms have created a promising and versatile field of nanomedicine, incorporating materials that are biocompatible, such as lipids, but also functional, such as stimuli-responsive polymers. In the present work, thermoresponsive chimeric nanocarriers composed of l-α-phosphatidylcholine (Egg, Chicken) (EPC) phospholipids and poly(N-isopropylacrylamide)-b-poly(lauryl acrylate) (PNIPAM-b-PLA) block copolymers were designed and developed. Initially, model lipid bilayers with incorporated polymers and drug molecule TRAM-34 were built and studied for their thermodynamics, in order to assess the stability and functionality of the systems. Chimeric nanoparticles of EPC and PNIPAM-b-PLA were then developed and evaluated for their physicochemical properties in different medium conditions, as well as for their morphology. Polymer incorporation led to alterations in the properties and morphology of the nanoparticles, while interactions with serum proteins were absent. TRAM-34 was also incorporated inside the developed nanocarriers, followed by incorporation and release studies, which revealed the functionality of the system in elevated temperature conditions. Finally, in vitro studies on normal cells suggest the biocompatibility of these nanosystems. The proposed platforms are promising for further studies and applications in vitro and in vivo.


Assuntos
Lipossomos , Polímeros , Sistemas de Liberação de Medicamentos , Bicamadas Lipídicas , Fosfolipídeos
10.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200955

RESUMO

Nanocarriers are delivery platforms of drugs, peptides, nucleic acids and other therapeutic molecules that are indicated for severe human diseases. Gliomas are the most frequent type of brain tumor, with glioblastoma being the most common and malignant type. The current state of glioma treatment requires innovative approaches that will lead to efficient and safe therapies. Advanced nanosystems and stimuli-responsive materials are available and well-studied technologies that may contribute to this effort. The present study deals with the development of functional chimeric nanocarriers composed of a phospholipid and a diblock copolymer, for the incorporation, delivery and pH-responsive release of the antiglioma agent TRAM-34 inside glioblastoma cells. Nanocarrier analysis included light scattering, protein incubation and electron microscopy, and fluorescence anisotropy and thermal analysis techniques were also applied. Biological assays were carried out in order to evaluate the nanocarrier nanotoxicity in vitro and in vivo, as well as to evaluate antiglioma activity. The nanosystems were able to successfully manifest functional properties under pH conditions, and their biocompatibility and cellular internalization were also evident. The chimeric nanoplatforms presented herein have shown promise for biomedical applications so far and should be further studied in terms of their ability to deliver TRAM-34 and other therapeutic molecules to glioblastoma cells.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Lipossomos/administração & dosagem , Nanopartículas/administração & dosagem , Polímeros/química , Pirazóis/administração & dosagem , Apoptose , Proliferação de Células , Glioma/metabolismo , Glioma/patologia , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Nanopartículas/química , Células Tumorais Cultivadas
11.
Adv Exp Med Biol ; 1339: 317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35023119

RESUMO

The fields of medicine and therapeutics have lately turned towards more modern approaches for the therapy of diseases. These approaches have been classified as new health technologies and various issues that regard their development, application in therapy, regulatory framework, approval and post-approval monitoring have emerged. In the European environment, the law and legislation distinguish new health technologies in certain subcategories, namely, medicinal products, medical devices, biotechnological products, advanced therapy medicinal products and nanomedicinal products. Among these strategies, nanomedicine utilizes entities at the nanoscale that exhibit therapeutic effect in various diseases, such as neurodegenerative disorders, through chemical, physical or biological action. Several nanotechnology-based therapies have been authorized until today; however, there is still no marketed nanomedicine for neurodegenerative diseases. Advanced nanotechnological platforms, including the prominent example of stimuli-responsive chimeric/mixed nanocarriers, promise high therapeutic efficacy and safety, through their functional properties and biocompatibility, which come from their composing molecules, self-assembled properties and supramolecular structures. The integration of certain important analytical tools for the study of nanocarriers is also of great importance and may provide knowledge for further development of advanced nanomedicines as well as for their follow-on products, known as "nanosimilars".


Assuntos
Doenças Neurodegenerativas , Humanos , Nanomedicina , Nanotecnologia , Doenças Neurodegenerativas/tratamento farmacológico
12.
Adv Exp Med Biol ; 1339: 385-394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35023130

RESUMO

Liposomes and lipidic vehicles are nanotechnological platforms that are present in the clinic and industry, with extensive application and much potential in the field of therapeutics. Currently, the obstacles associated with the pathology and physiology of Alzheimer's disease (AD) and neurodegenerative disorders (NDDs) in general have rendered it impossible to find an effective therapy for these conditions. The only achievement of the available drugs and treatments is that they have succeeded in temporarily alleviating the symptoms and assisting patients in carrying on with their activities of daily living, but they do not delay, let alone halt, the progression of the diseases. So far, numerous small drug molecules and biological molecules have failed in clinical trials. Liposomes represent a promising option for drug delivery that have yet to be tested in clinical trials. They are manufactured by many different and versatile techniques. Their contribution in AD regards mainly the delivery of bioactive agents in a targeted and controlled manner through the blood-brain barrier and into the brain, with the ultimate goal to block the ß-amyloid (Aß) and/or tau aggregation. Their flexibility and biocompatibility as platforms, combined with their ability to protect the encapsulated/incorporated molecules, are advantages that are expected to assist this endeavor.


Assuntos
Doença de Alzheimer , Lipossomos , Atividades Cotidianas , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Humanos
13.
Methods Mol Biol ; 2207: 163-174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33113135

RESUMO

Differential scanning calorimetry (DSC) is a widely utilized method for the interactions of drug molecules with drug delivery systems (DDSs). Herein is described a protocol for studying the interactions and entrapment efficiency of the prototype sartan losartan and the polydynamic, structurally similar irbesartan inside the nontoxic 2-hydroxypropyl-ß-cyclodextrin (2-HP-ß-CD). The thermal scan properties of both sartan molecules have been studied when physically mixed or complexed with the cyclodextrin. The thermograms indeed showed significant differences between the mixtures and complexes, establishing DSC as a valuable method to characterize the state of the drugs in these pharmaceutical formulations.


Assuntos
Ciclodextrinas/química , Portadores de Fármacos/química , Irbesartana/química , Losartan/química , Varredura Diferencial de Calorimetria
14.
Methods Mol Biol ; 2207: 221-233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33113139

RESUMO

Stimuli-responsive nanosystems are an emerging technology in the field of therapy and are very promising for various applications, including targeted drug delivery. In this chapter, our scope is to integrate two different methodologies, namely differential scanning calorimetry (DSC) and dynamic light scattering (DLS), in order to rationally approach the functional behavior of thermoresponsive chimeric/mixed liposomes and interpret their thermoresponsiveness on a thermodynamic basis. In particular, chimeric bilayers comprised of the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and two different-in-composition thermoresponsive amphiphilic block copolymers poly(N-isopropylacrylamide)-b-poly(lauryl acrylate) (PNIPAM-b-PLA) 1 or 2 were built by a conventional evaporation technique, followed by DSC, and chimeric liposomes of DPPC and PNIPAM-b-PLA 1 were developed and studied by DLS, after preparation and after a simple heating protocol. The results from both methodologies indicate the composition- and concentration-dependent lyotropic effect of the foreign copolymer molecule on the properties and functionality of the lipidic membrane.


Assuntos
Resinas Acrílicas/química , Nanoestruturas/química , Fosfolipídeos/química , Termodinâmica , Varredura Diferencial de Calorimetria , Lipossomos
15.
Methods Mol Biol ; 2207: 299-312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33113143

RESUMO

Differential scanning calorimetry (DSC) is a well-established technique, suitable to monitor the interactions that may take place among the drug delivery systems of liposomes and the potential bioactive molecules that are incorporated inside them. Moreover, the DSC technique is considered to be a useful tool to characterize the thermal behavior of lipidic bilayers in the absence and presence of drugs and to highlight parameters, such as the cooperativity between the lipids and the guest molecules (i.e. drugs, polymers, dendrimers), providing also a prediction of the behavior of potential future drug delivery liposomal platforms. In this study, a protocol for DSC measurements on liposomal systems with incorporated guest molecules is described.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Dendrímeros/química , Bicamadas Lipídicas/química , Avaliação de Medicamentos , Lipossomos
16.
Materials (Basel) ; 13(21)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171678

RESUMO

Lipidic vehicles are novel industrial products, utilized as components for pharmaceutical, cosmeceutical and nutraceutical formulations. The present study concerns a newly invented method to produce lipidic vehicles in the nanoscale that is simple, nontoxic, versatile, time-efficient, low-cost and easy to scale up. The process is a modification of the heating method (MHM) and comprises (i) providing a mixture of an amphiphilic lipid and a charged lipid and/or a fluidity regulator in a liquid medium composed of water and a liquid polyol, (ii) stirring and heating the mixture in two heating steps, wherein the temperature of the second step is higher than the temperature of the first step and (iii) allowing the mixture to cool down to room temperature. The process leads to the self-assembly of nanoparticles of small size and good homogeneity, compared with conventional approaches that require additional size reduction steps. In addition, the incorporation of bioactive molecules, such as drugs, inside the nanoparticles is possible, while lyophilization of the products provides long-term stability. Most importantly, the absence of toxic solvents and the simplicity guarantee the safety and scalability of the process, distinguishing it from most prior art processes to produce of lipidic vehicles.

17.
Mol Pharm ; 17(11): 4241-4255, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32986435

RESUMO

Quercetin (Que) is a flavonoid associated with high oxygen radical scavenging activity and potential neuroprotective activity against Alzheimer's disease. Que's oral bioavailability is limited by its low water solubility and extended peripheral metabolism; thus, nasal administration may be a promising alternative to achieve effective Que concentrations in the brain. The formation of Que-2-hydroxypropylated-ß-cyclodextrin (Que/HP-ß-CD) complexes was previously found to increase the molecule's solubility and stability in aqueous media. Que-methyl-ß-cyclodextrin (Que/Me-ß-CD) inclusion complexes were prepared, characterized, and compared with the Que/HP-ß-CD complex using biophysical and computational methods (phase solubility, fluorescence and NMR spectroscopy, differential scanning calorimetry (DSC), and molecular dynamics simulations (MDS)) as candidates for the preparation of nose-to-brain Que's delivery systems. DSC thermograms, NMR, fluorescence spectroscopy, and MDS confirmed the inclusion complex formation of Que with both CDs. Differences between the two preparations were observed regarding their thermodynamic stability and inclusion mode governing the details of molecular interactions. Que's solubility in aqueous media at pH 1.2 and 4.5 was similar and linearly increased with both CD concentrations. At pH 6.8, Que's solubility was higher and positively deviated from linearity in the presence of HP-ß-CD more than with Me-ß-CD, possibly revealing the presence of more than one HP-ß-CD molecule involved in the complex. Overall, water solubility of lyophilized Que/Me-ß-CD and Que/HP-ß-CD products was approximately 7-40 times and 14-50 times as high as for pure Que at pH 1.2-6.8. In addition, the proof of concept experiment on ex vivo permeation across rabbit nasal mucosa revealed measurable and similar Que permeability profiles with both CDs and negligible permeation of pure Que. These results are quite encouraging for further ex vivo and in vivo evaluation toward nasal administration and nose-to-brain delivery of Que.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Encéfalo/efeitos dos fármacos , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Mucosa Nasal/efeitos dos fármacos , Quercetina/administração & dosagem , Quercetina/química , beta-Ciclodextrinas/química , Administração Intranasal/métodos , Animais , Disponibilidade Biológica , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Quercetina/farmacocinética , Coelhos , Solubilidade , Temperatura de Transição
18.
Molecules ; 25(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784926

RESUMO

Rindera graeca is a Greek endemic plant of the Boraginaceae family which has never been studied before. Consequently, this study attempted to phytochemically examine the aerial parts of this species. Nine phenolic secondary metabolites were identified, consisting of seven caffeic acid derivatives and two flavonol glucosides, namely rutin and quercetin-3-rutinoside-7-rhamnoside. These flavonoids, together with rosmarinic acid, were isolated via column chromatography and structurally determined through spectral analysis. Quercetin-3-rutinoside-7-rhamnoside is an unusual triglycoside, which is identified for the first time in Rindera genus and among Boraginaceae plants. This metabolite was further examined with thermal analysis and its 3D structure was simulated, revealing some intriguing information on its interaction with biological membrane models, which might have potential applications in microcirculation-related conditions. R. graeca was also analyzed for its pyrrolizidine alkaloids content, and it was found to contain echinatine together with echinatine N-oxide and rinderine N-oxide. Additionally, the total phenolic and flavonoid contents of R. graeca methanol extract were determined, along with free radical inhibition assays. High total phenolic content and almost complete inhibition at experimental doses at the free radical assays indicate a potent antioxidant profile for this plant. Overall, through phytochemical analysis and biological activity assays, insight was gained on an endemic Greek species of the little-studied Rindera genus, while its potential for further applications has been assessed.


Assuntos
Antioxidantes/farmacologia , Boraginaceae/química , Flavonoides/análise , Compostos Fitoquímicos/análise , Extratos Vegetais/análise , Alcaloides de Pirrolizidina/análise , Cinamatos/análise , Depsídeos/análise , Fenóis/análise , Folhas de Planta/química , Quercetina/análogos & derivados , Quercetina/análise , Ácido Rosmarínico
19.
Chem Biol Drug Des ; 96(1): 668-683, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32691965

RESUMO

Irbesartan (IRB) exerts beneficial effects either alone or in combination with other drugs on numerous diseases, such as cancer, diabetes, and hypertension. However, due to its high lipophilicity, IRB does not possess the optimum pharmacological efficiency. To circumvent this problem, a drug delivery system with 2-hydroxypropyl-ß-cyclodextrin (2-HP-ß-CD) was explored. The 1:1 complex between IRB and 2-HP-ß-CD was identified through ESI QTF HRMS. Dissolution studies showed a higher dissolution rate of the lyophilized IRB-2-HP-ß-CD complex than the tablet containing IRB at pH = 1.2. DSC results revealed the differences of the thermal properties between the complex and various mixtures consisting of the two components, namely IRB and 2-HP-ß-CD. Interestingly, depending on the way the mixture preparation was conducted, different association between the two components was observed. Molecular dynamics (MD) simulations predicted the favorable formation of the above complex and identified the dominant interactions between IRB and 2-HP-ß-CD. In vitro pharmacological results verified that the inclusion complex not only preserves the binding affinity of IRB for AT1R receptor, but also it slightly increases it. As the complex formulation lacks the problems of the tablet, our approach is a promising new way to improve the efficiency of IRB.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Anti-Hipertensivos/química , Irbesartana/química , Anti-Hipertensivos/farmacologia , Composição de Medicamentos , Liberação Controlada de Fármacos , Liofilização , Humanos , Conformação Molecular , Simulação de Dinâmica Molecular , Solubilidade , Espectrometria de Massas por Ionização por Electrospray
20.
J Liposome Res ; 30(3): 209-217, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31146618

RESUMO

Liposomes have been on the market as drug delivery systems for over 25 years. Their success comes from the ability to carry toxic drug molecules to the appropriate site of action through passive accumulation, thus reducing their severe side effects. However, the need for enhanced circulation time and site and time-specific drug delivery turned research focus on other systems, such as polymers. In this context, novel composites that combine the flexibility of polymeric nanosystems with the properties of liposomes gained a lot of interest. In the present work a mixed/chimeric liposomal system, composed of phospholipids and block copolymers, was developed and evaluated in regards with its feasibility as a drug delivery system. These innovative nano-platforms combine advantages from both classes of biomaterials. Thermal analysis was performed in order to offers an insight into the interactions between these materials and consequently into their physicochemical characteristics. In addition, colloidal stability was assessed by monitoring z-potential and size distribution over time. Finally, their suitability as carriers for biomedical applications was evaluated by carrying out in vitro toxicity studies.


Assuntos
Lactonas/química , Bicamadas Lipídicas/química , Polímeros/química , Termodinâmica , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sistemas de Liberação de Medicamentos , Células HEK293 , Humanos , Lactonas/farmacologia , Bicamadas Lipídicas/síntese química , Bicamadas Lipídicas/farmacologia , Lipossomos , Estrutura Molecular , Polímeros/síntese química , Polímeros/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA