Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Commun ; 6(2): fcae043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482373

RESUMO

The progression of PET-based Braak stages correlates with cognitive deterioration in aging and Alzheimer's disease. Here, we investigate the association between PET-based Braak stages and functional impairment and assess whether PET-based Braak staging predicts a longitudinal decline in the performance of activities of daily living. In this cohort study, we evaluated cognitively unimpaired individuals and individuals with mild cognitive impairment or Alzheimer's disease dementia. Participants underwent [18F]MK6240 tau-PET, were assigned a PET-based Braak stage at baseline and were followed for a mean (SD) of 1.97 (0.66) years. Functional performance was evaluated with the Functional Activities Questionnaire, Everyday Cognition and functional Clinical Dementia Rating sum of boxes. Multiple linear regressions assessed the association of PET-based Braak stages with baseline functionality and with the longitudinal rate of change in functional scores, adjusting for age, sex and amyloid-ß load. We employed voxel-based regression models to investigate the association between functionality and tau-PET signal and assessed the voxel overlap with Braak regions of interest. We included 291 individuals (181 cognitively unimpaired, 56 amyloid-ß+ mild cognitive impairment and 54 amyloid-ß+ Alzheimer's disease) aged 70.60 (7.48) years. At baseline, PET-based Braak stages III-IV (ß = 0.43, P = 0.03) and V-VI (ß = 1.20, P < 0.0001) showed associations with poorer Functional Activities Questionnaire scores. Similarly, stages III-IV (ß = 0.43, P = 0.02) and V-VI (ß = 1.15, P < 0.0001) were associated with worse Everyday Cognition scores. Only stages V-VI were associated with higher functional Clinical Dementia Rating sum of boxes (ß = 1.17, P < 0.0001) scores. Increased tau-PET signals in all Braak regions of interest were linked to worse performance in all tools. The voxelwise analysis showed widespread cortical associations between functional impairment and tau-PET and high voxel overlap with Braak regions of interest. Baseline PET-based Braak stages V-VI predicted significant longitudinal functional decline as assessed by the Functional Activities Questionnaire (ß = 1.69, P < 0.0001), the Everyday Cognition (ß = 1.05, P = 0.001) and the functional Clinical Dementia Rating sum of boxes (ß = 1.29, P < 0.0001). Our results suggest that functional impairment increases with the severity of tau accumulation. These findings also indicate that PET-based Braak staging is a good predictor of functional impairment in the Alzheimer's disease continuum. Finally, our study provides evidence for the clinical significance of the PET-based Braak staging framework.

2.
Alzheimers Dement ; 19(11): 4967-4977, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37078495

RESUMO

INTRODUCTION: Plasma biomarkers are promising tools for Alzheimer's disease (AD) diagnosis, but comparisons with more established biomarkers are needed. METHODS: We assessed the diagnostic performance of p-tau181 , p-tau217 , and p-tau231 in plasma and CSF in 174 individuals evaluated by dementia specialists and assessed with amyloid-PET and tau-PET. Receiver operating characteristic (ROC) analyses assessed the performance of plasma and CSF biomarkers to identify amyloid-PET and tau-PET positivity. RESULTS: Plasma p-tau biomarkers had lower dynamic ranges and effect sizes compared to CSF p-tau. Plasma p-tau181 (AUC = 76%) and p-tau231 (AUC = 82%) assessments performed inferior to CSF p-tau181 (AUC = 87%) and p-tau231 (AUC = 95%) for amyloid-PET positivity. However, plasma p-tau217 (AUC = 91%) had diagnostic performance indistinguishable from CSF (AUC = 94%) for amyloid-PET positivity. DISCUSSION: Plasma and CSF p-tau217 had equivalent diagnostic performance for biomarker-defined AD. Our results suggest that plasma p-tau217 may help reduce the need for invasive lumbar punctures without compromising accuracy in the identification of AD. HIGHLIGHTS: p-tau217 in plasma performed equivalent to p-tau217 in CSF for the diagnosis of AD, suggesting the increased accessibility of plasma p-tau217 is not offset by lower accuracy. p-tau biomarkers in plasma had lower mean fold-changes between amyloid-PET negative and positive groups than p-tau biomarkers in CSF. CSF p-tau biomarkers had greater effect sizes than plasma p-tau biomarkers when differentiating between amyloid-PET positive and negative groups. Plasma p-tau181 and plasma p-tau231 performed worse than p-tau181 and p-tau231 in CSF for AD diagnosis.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Punção Espinal , Proteínas Amiloidogênicas , Plasma , Biomarcadores , Proteínas tau , Peptídeos beta-Amiloides
3.
Front Comput Neurosci ; 16: 875282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782087

RESUMO

The study of brain-to-brain synchrony has a burgeoning application in the brain-computer interface (BCI) research, offering valuable insights into the neural underpinnings of interacting human brains using numerous neural recording technologies. The area allows exploring the commonality of brain dynamics by evaluating the neural synchronization among a group of people performing a specified task. The growing number of publications on brain-to-brain synchrony inspired the authors to conduct a systematic review using the PRISMA protocol so that future researchers can get a comprehensive understanding of the paradigms, methodologies, translational algorithms, and challenges in the area of brain-to-brain synchrony research. This review has gone through a systematic search with a specified search string and selected some articles based on pre-specified eligibility criteria. The findings from the review revealed that most of the articles have followed the social psychology paradigm, while 36% of the selected studies have an application in cognitive neuroscience. The most applied approach to determine neural connectivity is a coherence measure utilizing phase-locking value (PLV) in the EEG studies, followed by wavelet transform coherence (WTC) in all of the fNIRS studies. While most of the experiments have control experiments as a part of their setup, a small number implemented algorithmic control, and only one study had interventional or a stimulus-induced control experiment to limit spurious synchronization. Hence, to the best of the authors' knowledge, this systematic review solely contributes to critically evaluating the scopes and technological advances of brain-to-brain synchrony to allow this discipline to produce more effective research outcomes in the remote future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA