Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1106543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065127

RESUMO

Aflatoxin contamination of the staples maize and groundnut is a concern for health and economic impacts across sub-Saharan Africa. The current study (i) determined aflatoxin levels in maize and groundnut collected at harvest in Burundi, (ii) characterized populations of Aspergillus section Flavi associated with the two crops, and (iii) assessed aflatoxin-producing potentials among the recovered fungi. A total of 120 groundnut and 380 maize samples were collected at harvest from eight and 16 provinces, respectively. Most of the groundnut (93%) and maize (87%) contained aflatoxin below the European Union threshold, 4 µg/kg. Morphological characterization of the recovered Aspergillus section Flavi fungi revealed that the L-morphotype of A. flavus was the predominant species. Aflatoxin production potentials of the L-morphotype isolates were evaluated in maize fermentations. Some isolates produced over 137,000 µg/kg aflatoxin B1. Thus, despite the relatively low aflatoxin levels at harvest, the association of both crops with highly toxigenic fungi poses significant risk of post-harvest aflatoxin contamination and suggests measures to mitigate aflatoxin contamination in Burundi should be developed. Over 55% of the L-morphotype A. flavus did not produce aflatoxins. These atoxigenic L-morphotype fungi were characterized using molecular markers. Several atoxigenic genotypes were detected across the country and could be used as biocontrol agents. The results from the current study hold promise for developing aflatoxin management strategies centered on biocontrol for use in Burundi to reduce aflatoxin contamination throughout the value chain.

2.
Plants (Basel) ; 9(9)2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842551

RESUMO

Fusarium wilt, caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc) race 1, is a major disease of bananas in East Africa. Triploid East African Highland (Matooke) bananas are resistant to Foc race 1, but the response of diploid (Mchare and Muraru) bananas to the fungus is largely unknown. A breeding project was initiated in 2014 to increase crop yield and improve disease and pest resistance of diploid and triploid East African Highland bananas. In this study, eight Mchare cultivars were evaluated for resistance to Foc race 1 in the field in Arusha, Tanzania. In addition, the same eight Mchare cultivars, as well as eight Muraru cultivars, 27 Mchare hybrids, 60 Matooke hybrids and 19 NARITA hybrids were also screened in pot trials. The diploid Mchare and Muraru cultivars were susceptible to Foc race 1, whereas the responses of Mchare, NARITAs and Matooke hybrids ranged from susceptible to resistant. The Mchare and Matooke hybrids resistant to Foc race 1 can potentially replace susceptible cultivars in production areas severely affected by the fungus. Some newly bred Matooke hybrids became susceptible following conventional breeding, suggesting that new hybrids need to be screened for resistance to all Foc variants.

3.
PLoS One ; 15(7): e0236110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32687514

RESUMO

Banana is an important food crop and source of income in Africa. Sustainable production of banana, however, is at risk because of pests and diseases such as Fusarium wilt, caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). Foc can be disseminated from infested to disease-free fields in plant material, water and soil. Early detection of Foc using DNA technologies is thus required to accurately identify the fungus and prevent its further dissemination with plants, soil and water. In this study, quantitative (q)PCR assays were developed for the detection of Foc Lineage VI strains found in central and eastern Africa (Foc races 1 and 2), Foc TR4 (vegetative compatibility groups (VCG) 01213/16) that is present in Mozambique, and Foc STR4 (VCG 0120/15) that occurs in South Africa. A collection of 127 fungal isolates were selected for specificity testing, including endophytic Fusarium isolates from banana pseudostems, non-pathogenic F. oxysporum strains and Foc isolates representing the 24 VCGs in Foc. Primer sets that proved to be specific to Foc Lineage VI, Foc TR4 and Foc STR4 were used to produce standard curves for absolute quantification, and the qPCR assays were evaluated based on the quality of standard curves, repeatability and reproducibility, and limits of quantification (LOQ) and detection (LOD). The qPCR assays for Foc Lineage VI, TR4 and STR4 were repeatable and reproducible, with LOQ values of 10-3-10-4 ng/µL and a LOD of 10-4-10-5 ng/µL. The quantitative detection of Foc strains in Africa could reduce the time and improve the accuracy for identifying the Fusarium wilt pathogen from plants, water and soil on the continent.


Assuntos
Fusarium/isolamento & purificação , Musa/microbiologia , Microbiologia do Solo , Microbiologia da Água , África , Fusarium/genética , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase
4.
Plant Dis ; 102(3): 552-560, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673475

RESUMO

Banana Fusarium wilt is a major production constraint globally and a significant threat to the livelihoods of millions of people in East and Central Africa (ECA). A proper understanding of the diversity and population dynamics of the causal agent, Fusarium oxysporum f. sp. cubense (Foc), could be useful for the development of sustainable disease management strategies for the pathogen. The current study investigated the diversity of Foc in ECA using vegetative compatibility group (VCG) analysis, PCR-RFLPs of the ribosomal DNA's intergenic spacer region, as well as phylogenetic analysis of the elongation factor-1α gene. Six VCGs (0124, 0125, 0128, 01212, 01220, and 01222), which all belong to one lineage (Foc lineage VI), were widely distributed throughout the region. VCGs 0128 and 01220 are reported for the first time in Burundi, the Democratic Republic of Congo (DRC), Rwanda, Tanzania, and Uganda, while VCG 01212 is reported in the DRC and Rwanda. Isolates that did not belong to any of the known VCGs were identified as Foc lineage VI members by phylogenetic analysis and may represent novel VCGs. CAV 2734, a banana pathogen collected in Rwanda, clustered with nonpathogenic F. oxysporum isolates in lineage VIII. Results from this study will contribute significantly toward the implementation of banana Fusarium wilt disease management practices in the region, such as the restricted movement of infected planting material and the selective planting of resistant banana varieties.


Assuntos
Fusarium/genética , Variação Genética , Musa/microbiologia , Doenças das Plantas/microbiologia , África Central , África Oriental , Fusarium/classificação , Fusarium/isolamento & purificação , Fusarium/patogenicidade , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA