Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pediatr ; 226: 202-212.e1, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32553838

RESUMO

OBJECTIVES: To evaluate the clinical usefulness of rapid exome sequencing (rES) in critically ill children with likely genetic disease using a standardized process at a single institution. To provide evidence that rES with should become standard of care for this patient population. STUDY DESIGN: We implemented a process to provide clinical-grade rES to eligible children at a single institution. Eligibility included (a) recommendation of rES by a consulting geneticist, (b) monogenic disorder suspected, (c) rapid diagnosis predicted to affect inpatient management, (d) pretest counseling provided by an appropriate provider, and (e) unanimous approval by a committee of 4 geneticists. Trio exome sequencing was sent to a reference laboratory that provided verbal report within 7-10 days. Clinical outcomes related to rES were prospectively collected. Input from geneticists, genetic counselors, pathologists, neonatologists, and critical care pediatricians was collected to identify changes in management related to rES. RESULTS: There were 54 patients who were eligible for rES over a 34-month study period. Of these patients, 46 underwent rES, 24 of whom (52%) had at least 1 change in management related to rES. In 20 patients (43%), a molecular diagnosis was achieved, demonstrating that nondiagnostic exomes could change medical management in some cases. Overall, 84% of patients were under 1 month old at rES request and the mean turnaround time was 9 days. CONCLUSIONS: rES testing has a significant impact on the management of critically ill children with suspected monogenic disease and should be considered standard of care for tertiary institutions who can provide coordinated genetics expertise.


Assuntos
Sequenciamento do Exoma , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos , Adolescente , Criança , Pré-Escolar , Cuidados Críticos , Estado Terminal , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Humanos , Lactente , Recém-Nascido , Masculino , Seleção de Pacientes , Estudos Retrospectivos
2.
Neurol Genet ; 6(2): 1-13, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32211513

RESUMO

OBJECTIVE: To identify the genetic cause of autosomal dominant ataxia complicated by behavioral abnormalities, cognitive decline, and autism in 2 families and to characterize brain neuropathologic signatures of dominant STUB1-related ataxia and investigate the effects of pathogenic variants on STUB1 localization. METHODS: Clinical and research-based exome sequencing was used to identify the causative variants for autosomal dominant ataxia in 2 families. Gross and microscopic neuropathologic evaluations were performed on the brains of 4 affected individuals in these families. RESULTS: Mutations in STUB1 have been primarily associated with childhood-onset autosomal recessive ataxia, but here we report heterozygous missense variants in STUB1 (p.Ile53Thr and p.The37Leu) confirming the recent reports of autosomal dominant inheritance. Cerebellar atrophy on imaging and cognitive deficits often preceded ataxia. Unique neuropathologic examination of the 4 brains showed the marked loss of Purkinje cells (PCs) without microscopic evidence of significant pathology outside the cerebellum. The normal pattern of polarized somatodendritic STUB1 protein expression in PCs was lost, resulting in aberrant STUB1 localization in the distal PC dendritic arbors. CONCLUSIONS: This study confirms a dominant inheritance pattern in STUB1-ataxia in addition to a recessive one and documents its association with cognitive and behavioral disability, including autism. In the most extensive analysis of cerebellar pathology in this disease, we demonstrate disruption of STUB1 protein in PCs as part of the underlying pathogenesis.

3.
BMJ Case Rep ; 12(9)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527204

RESUMO

Glycogen storage disease type IV (GSD IV, Andersen disease) is a rare autosomal recessive condition. The childhood neuromuscular subtype of GSD IV is characterised by a progressive skeletal myopathy with cardiomyopathy also reported in some individuals. We report a case of a 19-year-old man who presented with severe non-ischaemic dilated cardiomyopathy (NIDCM) necessitating heart transplantation, with biopsy showing aggregations of polyglucosan bodies in cardiac myocytes. He had no signs or symptoms of muscle weakness, liver dysfunction or neurologic involvement. A homozygous GBE1 c.607C>A (p.His203Asn) variant was identified. Our case is unusual in that our patient presented with an isolated NIDCM in the absence of other clinical manifestations of GSD IV. This case highlights the importance of considering storage disorders in young adults presenting with isolated NIDCM of unknown aetiology. It also emphasises the potential synergy between histopathological evaluation and genomic testing in enhancing diagnostic certainty.


Assuntos
Cardiomiopatia Dilatada/cirurgia , Doença de Depósito de Glicogênio Tipo IV/diagnóstico , Transplante de Coração , Adulto , Cardiomiopatia Dilatada/etiologia , Dispneia , Doença de Depósito de Glicogênio Tipo IV/complicações , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA