Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1436393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39416279

RESUMO

Our previous article entitled "Proteomics and its applications in breast cancer", proposed a Breast Cancer Continuum Concept (BCCC), including a Breast Cancer Cell Continuum Concept as well as a Breast Cancer Proteomic Continuum Concept. Breast cancer-on-chip (BCoC), breast cancer liquid biopsy-on-chip (BCLBoC), and breast cancer metastasis-on-chip (BCMoC) models successfully recapitulate and reproduce in vitro the principal mechanisms and events involved in BCCC. Thus, BCoC, BCLBoC, and BCMoC platforms allow for multiple cell lines co-cultivation to reproduce BC hallmark features, recapitulating cell proliferation, cell-to-cell communication, BC cell-stromal crosstalk and stromal activation, effects of local microenvironmental conditions on BC progression, invasion/epithelial-mesenchymal transition (EMT)/migration, intravasation, dissemination through blood and lymphatic circulation, extravasation, distant tissues colonization, and immune escape of cancer cells. Moreover, tumor-on-chip platforms are used for studying the efficacy and toxicity of chemotherapeutic drugs/nano-drugs or nutraceuticals. Therefore, the aim of this review is to summarize and analyse the main bio-medical roles of on-chip platforms that can be used as powerful tools to study the metastatic cascade in BC. As future direction, integration of tumor-on-chip platforms and proteomics-based specific approaches can offer important cues about molecular profile of the metastatic cascade, alowing for novel biomarker discovery. Novel microfluidics-based platforms integrating specific proteomic landscape of human milk, urine, and saliva could be useful for early and non-invasive BC detection. Also, risk-on-chip models may improve BC risk assessment and prevention based on the identification of biomarkers of risk. Moreover, multi-organ-on-chip systems integrating patient-derived BC cells and patient-derived scaffolds have a great potential to study BC at integrative level, due to the systemic nature of BC, for personalized and precision medicine. We also emphasized the strengths and weaknesses of BCoC and BCMoC platforms.

2.
Int J Mol Sci ; 25(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39456858

RESUMO

Environmental exposure to a mixture of chemical xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis and the development of breast cancer (BC). Before anything else, we are what we eat. In this review, we highlight both "the good" and "the bad" sides of the daily human diet and dietary patterns that could influence BC risk (BCR) and incidence. Thus, regularly eating new, diversified, colorful, clean, nutrient-rich, energy-boosting, and raw food, increases apoptosis and autophagy, antioxidation, cell cycle arrest, anti-inflammation, and the immune response against BC cells. Moreover, a healthy diet could lead to a reduction in or the inhibition of genomic instability, BC cell stemness, growth, proliferation, invasion, migration, and distant metastasis. We also emphasize that, in addition to beneficial compounds, our food is more and more contaminated by chemicals with harmful effects, which interact with each other and with endogenous proteins and lipids, resulting in synergistic or antagonistic effects. Thus, a healthy and diverse diet, combined with appropriate nutritional behaviors, can exert anti-carcinogenic effects and improve treatment efficacy, BC patient outcomes, and the overall quality of life of BC patients.


Assuntos
Neoplasias da Mama , Dieta , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Carcinogênese/efeitos dos fármacos , Estado Nutricional , Animais
3.
Molecules ; 29(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39275004

RESUMO

Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound structural and functional variation. Thus, the proteome is highly dynamic and permanently reshaped and readapted, according to changing microenvironments, to maintain the local cell and tissue homeostasis. It is known that protein posttranslational modifications (PTMs) can affect all aspects of protein function. In this review, we focused our analysis on the different types of PTMs of histological biomarkers in BC. Thus, we analyzed the most common PTMs, including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, palmitoylation, myristoylation, and glycosylation/sialylation/fucosylation of transcription factors, proliferation marker Ki-67, plasma membrane proteins, and histone modifications. Most of these PTMs occur in the presence of cellular stress. We emphasized that these PTMs interfere with these biomarkers maintenance, turnover and lifespan, nuclear or subcellular localization, structure and function, stabilization or inactivation, initiation or silencing of genomic and non-genomic pathways, including transcriptional activities or signaling pathways, mitosis, proteostasis, cell-cell and cell-extracellular matrix (ECM) interactions, membrane trafficking, and PPIs. Moreover, PTMs of these biomarkers orchestrate all hallmark pathways that are dysregulated in BC, playing both pro- and/or antitumoral and context-specific roles in DNA damage, repair and genomic stability, inactivation/activation of tumor-suppressor genes and oncogenes, phenotypic plasticity, epigenetic regulation of gene expression and non-mutational reprogramming, proliferative signaling, endocytosis, cell death, dysregulated TME, invasion and metastasis, including epithelial-mesenchymal/mesenchymal-epithelial transition (EMT/MET), and resistance to therapy or reversal of multidrug therapy resistance. PTMs occur in the nucleus but also at the plasma membrane and cytoplasmic level and induce biomarker translocation with opposite effects. Analysis of protein PTMs allows for the discovery and validation of new biomarkers in BC, mainly for early diagnosis, like extracellular vesicle glycosylation, which may be considered as a potential source of circulating cancer biomarkers.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Processamento de Proteína Pós-Traducional , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Biomarcadores Tumorais/metabolismo , Feminino , Proteoma/metabolismo
4.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732200

RESUMO

We are living in an era of advanced nanoscience and nanotechnology. Numerous nanomaterials, culminating in nanorobots, have demonstrated ingenious applications in biomedicine, including breast cancer (BC) nano-theranostics. To solve the complicated problem of BC heterogeneity, non-targeted drug distribution, invasive diagnostics or surgery, resistance to classic onco-therapies and real-time monitoring of tumors, nanorobots are designed to perform multiple tasks at a small scale, even at the organelles or molecular level. Over the last few years, most nanorobots have been bioengineered as biomimetic and biocompatible nano(bio)structures, resembling different organisms and cells, such as urchin, spider, octopus, fish, spermatozoon, flagellar bacterium or helicoidal cyanobacterium. In this review, readers will be able to deepen their knowledge of the structure, behavior and role of several types of nanorobots, among other nanomaterials, in BC theranostics. We summarized here the characteristics of many functionalized nanodevices designed to counteract the main neoplastic hallmark features of BC, from sustaining proliferation and evading anti-growth signaling and resisting programmed cell death to inducing angiogenesis, activating invasion and metastasis, preventing genomic instability, avoiding immune destruction and deregulating autophagy. Most of these nanorobots function as targeted and self-propelled smart nano-carriers or nano-drug delivery systems (nano-DDSs), enhancing the efficiency and safety of chemo-, radio- or photodynamic therapy, or the current imagistic techniques used in BC diagnosis. Most of these nanorobots have been tested in vitro, using various BC cell lines, as well as in vivo, mainly based on mice models. We are still waiting for nanorobots that are low-cost, as well as for a wider transition of these favorable effects from laboratory to clinical practice.


Assuntos
Neoplasias da Mama , Nanotecnologia , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Neoplasias da Mama/diagnóstico , Feminino , Nanotecnologia/métodos , Animais , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Robótica/métodos , Nanomedicina Teranóstica/métodos , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
5.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612922

RESUMO

Precision oncology is based on deep knowledge of the molecular profile of tumors, allowing for more accurate and personalized therapy for specific groups of patients who are different in disease susceptibility as well as treatment response. Thus, onco-breastomics is able to discover novel biomarkers that have been found to have racial and ethnic differences, among other types of disparities such as chronological or biological age-, sex/gender- or environmental-related ones. Usually, evidence suggests that breast cancer (BC) disparities are due to ethnicity, aging rate, socioeconomic position, environmental or chemical exposures, psycho-social stressors, comorbidities, Western lifestyle, poverty and rurality, or organizational and health care system factors or access. The aim of this review was to deepen the understanding of BC-related disparities, mainly from a biomedical perspective, which includes genomic-based differences, disparities in breast tumor biology and developmental biology, differences in breast tumors' immune and metabolic landscapes, ecological factors involved in these disparities as well as microbiomics- and metagenomics-based disparities in BC. We can conclude that onco-breastomics, in principle, based on genomics, proteomics, epigenomics, hormonomics, metabolomics and exposomics data, is able to characterize the multiple biological processes and molecular pathways involved in BC disparities, clarifying the differences in incidence, mortality and treatment response for different groups of BC patients.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Animais , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Medicina de Precisão , Mama , Oncologia
6.
Life (Basel) ; 14(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38541726

RESUMO

We are exposed to a mixture of environmental man-made and natural xenobiotics. We experience a wide spectrum of environmental exposure in our lifetime, including the effects of xenobiotics on gametogenesis and gametes that undergo fertilization as the starting point of individual development and, moreover, in utero exposure, which can itself cause the first somatic or germline mutation necessary for breast cancer (BC) initiation. Most xenobiotics are metabolized or/and bioaccumulate and biomagnify in our tissues and cells, including breast tissues, so the xenobiotic metabolism plays an important role in BC initiation and progression. Many considerations necessitate a more valuable explanation regarding the molecular mechanisms of action of xenobiotics which act as genotoxic and epigenetic carcinogens. Thus, exposomics and the exposome concept are based on the diversity and range of exposures to physical factors, synthetic chemicals, dietary components, and psychosocial stressors, as well as their associated biologic processes and molecular pathways. Existing evidence for BC risk (BCR) suggests that food-borne chemical carcinogens, air pollution, ionizing radiation, and socioeconomic status are closely related to breast carcinogenesis. The aim of this review was to depict the dynamics and kinetics of several xenobiotics involved in BC development, emphasizing the role of new omics fields related to BC exposomics, such as environmental toxicogenomics, epigenomics and interactomics, metagenomics, nutrigenomics, nutriproteomics, and nutrimiRomics. We are mainly focused on food and nutrition, as well as endocrine-disrupting chemicals (EDCs), involved in BC development. Overall, cell and tissue accumulation and xenobiotic metabolism or biotransformation can lead to modifications in breast tissue composition and breast cell morphology, DNA damage and genomic instability, epimutations, RNA-mediated and extracellular vesicle effects, aberrant blood methylation, stimulation of epithelial-mesenchymal transition (EMT), disruption of cell-cell junctions, reorganization of the actin cytoskeleton, metabolic reprogramming, and overexpression of mesenchymal genes. Moreover, the metabolism of xenobiotics into BC cells impacts almost all known carcinogenic pathways. Conversely, in our food, there are many bioactive compounds with anti-cancer potential, exerting pro-apoptotic roles, inhibiting cell cycle progression and proliferation, migration, invasion, DNA damage, and cell stress conditions. We can conclude that exposomics has a high potential to demonstrate how environmental exposure to xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis in BC.

7.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338903

RESUMO

Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.


Assuntos
Neoplasias da Mama , Ecossistema , Humanos , Feminino , Mastectomia , Evolução Biológica , Biologia do Desenvolvimento
8.
Molecules ; 28(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005222

RESUMO

The identification of new cancer-associated genes/proteins, the characterization of their expression variation, the interactomics-based assessment of differentially expressed genes/proteins (DEGs/DEPs), and understanding the tumorigenic pathways and biological processes involved in BC genesis and progression are necessary and possible by the rapid and recent advances in bioinformatics and molecular profiling strategies. Taking into account the opinion of other authors, as well as based on our own team's in vitro studies, we suggest that the human jumping translocation breakpoint (hJTB) protein might be considered as a tumor biomarker for BC and should be studied as a target for BC therapy. In this study, we identify DEPs, carcinogenic pathways, and biological processes associated with JTB silencing, using 2D-PAGE coupled with nano-liquid chromatography tandem mass spectrometry (nLC-MS/MS) proteomics applied to a MCF7 breast cancer cell line, for complementing and completing our previous results based on SDS-PAGE, as well as in-solution proteomics of MCF7 cells transfected for JTB downregulation. The functions of significant DEPs are analyzed using GSEA and KEGG analyses. Almost all DEPs exert pro-tumorigenic effects in the JTBlow condition, sustaining the tumor suppressive function of JTB. Thus, the identified DEPs are involved in several signaling and metabolic pathways that play pro-tumorigenic roles: EMT, ERK/MAPK, PI3K/AKT, Wnt/ß-catenin, mTOR, C-MYC, NF-κB, IFN-γ and IFN-α responses, UPR, and glycolysis/gluconeogenesis. These pathways sustain cancer cell growth, adhesion, survival, proliferation, invasion, metastasis, resistance to apoptosis, tight junctions and cytoskeleton reorganization, the maintenance of stemness, metabolic reprogramming, survival in a hostile environment, and sustain a poor clinical outcome. In conclusion, JTB silencing might increase the neoplastic phenotype and behavior of the MCF7 BC cell line. The data is available via ProteomeXchange with the identifier PXD046265.


Assuntos
Neoplasias da Mama , Espectrometria de Massas em Tandem , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/genética , Fosfatidilinositol 3-Quinases , Apoptose/genética
9.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834160

RESUMO

The identification of new genes/proteins involved in breast cancer (BC) occurrence is widely used to discover novel biomarkers and understand the molecular mechanisms of BC initiation and progression. The jumping translocation breakpoint (JTB) gene may act both as a tumor suppressor or oncogene in various types of tumors, including BC. Thus, the JTB protein could have the potential to be used as a biomarker in BC, but its neoplastic mechanisms still remain unknown or controversial. We previously analyzed the interacting partners of JTBhigh protein extracted from transfected MCF7 BC cell line using SDS-PAGE complemented with in-solution digestion, respectively. The previous results suggested the JTB contributed to the development of a more aggressive phenotype and behavior for the MCF7 BC cell line through synergistic upregulation of epithelial-mesenchymal transition (EMT), mitotic spindle, and fatty acid metabolism-related pathways. In this work, we aim to complement the previously reported JTB proteomics-based experiments by investigating differentially expressed proteins (DEPs) and tumorigenic pathways associated with JTB overexpression using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Statistically different gel spots were picked for protein digestion, followed by nanoliquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis. We identified six DEPs related to the JTBhigh condition vs. control that emphasize a pro-tumorigenic (PT) role. Twenty-one proteins, which are known to be usually overexpressed in cancer cells, emphasize an anti-tumorigenic (AT) role when low expression occurs. According to our previous results, proteins that have a PT role are mainly involved in the activation of the EMT process. Interestingly, JTB overexpression has been correlated here with a plethora of significant upregulated and downregulated proteins that sustain JTB tumor suppressive functions. Our present and previous results sustain the necessity of the complementary use of different proteomics-based methods (SDS-PAGE, 2D-PAGE, and in-solution digestion) followed by tandem mass spectrometry to avoid their limitations, with each method leading to the delineation of specific clusters of DEPs that may be merged for a better understanding of molecular pathways and neoplastic mechanisms related to the JTB's role in BC initiation and progression.


Assuntos
Neoplasias da Mama , Espectrometria de Massas em Tandem , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células MCF-7 , Carcinogênese , Eletroforese em Gel de Poliacrilamida , Cromatografia , Eletroforese em Gel Bidimensional
10.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513960

RESUMO

The chemical constituents of the Cannabis plant known as cannabinoids have been extensively researched for their potential therapeutic benefits. The use of cannabinoids applied to the skin as a potential method for both skin-related benefits and systemic administration has attracted increasing interest in recent years. This review aims to present an overview of the most recent scientific research on cannabinoids used topically, including their potential advantages for treating a number of skin conditions like psoriasis, atopic dermatitis, and acne. Additionally, with a focus on the pharmacokinetics and security of this route of administration, we investigate the potential of the transdermal delivery of cannabinoids as a method of systemic administration. The review also discusses the restrictions and difficulties related to the application of cannabinoids on the skin, emphasizing the potential of topical cannabinoids as a promising route for both localized and systemic administration. More studies are required to fully comprehend the efficacy and safety of cannabinoids in various settings.

11.
Molecules ; 28(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375323

RESUMO

Breast cancer (BC) is characterized by an extensive genotypic and phenotypic heterogeneity. In-depth investigations into the molecular bases of BC phenotypes, carcinogenesis, progression, and metastasis are necessary for accurate diagnoses, prognoses, and therapy assessments in predictive, precision, and personalized oncology. This review discusses both classic as well as several novel omics fields that are involved or should be used in modern BC investigations, which may be integrated as a holistic term, onco-breastomics. Rapid and recent advances in molecular profiling strategies and analytical techniques based on high-throughput sequencing and mass spectrometry (MS) development have generated large-scale multi-omics datasets, mainly emerging from the three "big omics", based on the central dogma of molecular biology: genomics, transcriptomics, and proteomics. Metabolomics-based approaches also reflect the dynamic response of BC cells to genetic modifications. Interactomics promotes a holistic view in BC research by constructing and characterizing protein-protein interaction (PPI) networks that provide a novel hypothesis for the pathophysiological processes involved in BC progression and subtyping. The emergence of new omics- and epiomics-based multidimensional approaches provide opportunities to gain insights into BC heterogeneity and its underlying mechanisms. The three main epiomics fields (epigenomics, epitranscriptomics, and epiproteomics) are focused on the epigenetic DNA changes, RNAs modifications, and posttranslational modifications (PTMs) affecting protein functions for an in-depth understanding of cancer cell proliferation, migration, and invasion. Novel omics fields, such as epichaperomics or epimetabolomics, could investigate the modifications in the interactome induced by stressors and provide PPI changes, as well as in metabolites, as drivers of BC-causing phenotypes. Over the last years, several proteomics-derived omics, such as matrisomics, exosomics, secretomics, kinomics, phosphoproteomics, or immunomics, provided valuable data for a deep understanding of dysregulated pathways in BC cells and their tumor microenvironment (TME) or tumor immune microenvironment (TIMW). Most of these omics datasets are still assessed individually using distinct approches and do not generate the desired and expected global-integrative knowledge with applications in clinical diagnostics. However, several hyphenated omics approaches, such as proteo-genomics, proteo-transcriptomics, and phosphoproteomics-exosomics are useful for the identification of putative BC biomarkers and therapeutic targets. To develop non-invasive diagnostic tests and to discover new biomarkers for BC, classic and novel omics-based strategies allow for significant advances in blood/plasma-based omics. Salivaomics, urinomics, and milkomics appear as integrative omics that may develop a high potential for early and non-invasive diagnoses in BC. Thus, the analysis of the tumor circulome is considered a novel frontier in liquid biopsy. Omics-based investigations have applications in BC modeling, as well as accurate BC classification and subtype characterization. The future in omics-based investigations of BC may be also focused on multi-omics single-cell analyses.


Assuntos
Genômica , Neoplasias , Humanos , Genômica/métodos , Proteômica/métodos , Epigenômica/métodos , Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Metabolômica/métodos , Microambiente Tumoral
12.
Proteomes ; 11(2)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37092454

RESUMO

Invasive ductal carcinoma (IDC) is the most common histological subtype of malignant breast cancer (BC), and accounts for 70-80% of all invasive BCs. IDC demonstrates great heterogeneity in clinical and histopathological characteristics, prognoses, treatment strategies, gene expressions, and proteomic profiles. Significant proteomic determinants of the progression from intraductal pre-invasive malignant lesions of the breast, which characterize a ductal carcinoma in situ (DCIS), to IDC, are still poorly identified, validated, and clinically applied. In the era of "6P" medicine, it remains a great challenge to determine which patients should be over-treated versus which need to be actively monitored without aggressive treatment. The major difficulties for designating DCIS to IDC progression may be solved by understanding the integrated genomic, transcriptomic, and proteomic bases of invasion. In this review, we showed that multiple proteomics-based techniques, such as LC-MS/MS, MALDI-ToF MS, SELDI-ToF-MS, MALDI-ToF/ToF MS, MALDI-MSI or MasSpec Pen, applied to in-tissue, off-tissue, BC cell lines and liquid biopsies, improve the diagnosis of IDC, as well as its prognosis and treatment monitoring. Classic proteomics strategies that allow the identification of dysregulated protein expressions, biological processes, and interrelated pathway analyses based on aberrant protein-protein interaction (PPI) networks have been improved to perform non-invasive/minimally invasive biomarker detection of early-stage IDC. Thus, in modern surgical oncology, highly sensitive, rapid, and accurate MS-based detection has been coupled with "proteome point sampling" methods that allow for proteomic profiling by in vivo "proteome point characterization", or by minimal tissue removal, for ex vivo accurate differentiation and delimitation of IDC. For the detection of low-molecular-weight proteins and protein fragments in bodily fluids, LC-MS/MS and MALDI-MS techniques may be coupled to enrich and capture methods which allow for the identification of early-stage IDC protein biomarkers that were previously invisible for MS-based techniques. Moreover, the detection and characterization of protein isoforms, including posttranslational modifications of proteins (PTMs), is also essential to emphasize specific molecular mechanisms, and to assure the early-stage detection of IDC of the breast.

13.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500393

RESUMO

Human jumping translocation breakpoint (hJTB) gene is located on chromosome 1q21 and is involved in unbalanced translocation in many types of cancer. JTB protein is ubiquitously present in normal cells but it is found to be overexpressed or downregulated in various types of cancer cells, where this protein and its isoforms promote mitochondrial dysfunction, resistance to apoptosis, genomic instability, proliferation, invasion and metastasis. Hence, JTB could be a tumor biomarker for different types of cancer, such as breast cancer (BC), and could be used as a drug target for therapy. However, the functions of the protein or the pathways through which it increases cell proliferation and invasiveness of cancer cells are not well-known. Therefore, we aim to investigate the functions of JTB by using in-solution digestion-based cellular proteomics of control and upregulated and downregulated JTB protein in MCF7 breast cancer cell line, taking account that in-solution digestion-based proteomics experiments are complementary to the initial in-gel based ones. Proteomics analysis allows investigation of protein dysregulation patterns that indicate the function of the protein and its interacting partners, as well as the pathways and biological processes through which it functions. We concluded that JTB dysregulation increases the epithelial-mesenchymal transition (EMT) potential and cell proliferation, harnessing cytoskeleton organization, apical junctional complex, metabolic reprogramming, and cellular proteostasis. Deregulated JTB expression was found to be associated with several proteins involved in mitochondrial organization and function, oxidative stress (OS), apoptosis, and interferon alpha and gamma signaling. Consistent and complementary to our previous results emerged by using in-gel based proteomics of transfected MCF7 cells, JTB-related proteins that are overexpressed in this experiment suggest the development of a more aggressive phenotype and behavior for this luminal type A non-invasive/poor-invasive human BC cell line that does not usually migrate or invade compared with the highly metastatic MDA-MB-231 cells. This more aggressive phenotype of MCF7 cells related to JTB dysregulation and detected by both in-gel and in-solution proteomics could be promoted by synergistic upregulation of EMT, Mitotic spindle and Fatty acid metabolism pathways. However, in both JTB dysregulated conditions, several downregulated JTB-interacting proteins predominantly sustain antitumor activities, attenuating some of the aggressive phenotypical and behavioral traits promoted by the overexpressed JTB-related partners.


Assuntos
Neoplasias da Mama , Proteômica , Humanos , Feminino , Células MCF-7 , Proteômica/métodos , Transição Epitelial-Mesenquimal/genética , Apoptose/genética , Proliferação de Células , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Invasividade Neoplásica
14.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361821

RESUMO

Chronic neuropathic pain (CNP) affects around 10% of the general population and has a significant social, emotional, and economic impact. Current diagnosis techniques rely mainly on patient-reported outcomes and symptoms, which leads to significant diagnostic heterogeneity and subsequent challenges in management and assessment of outcomes. As such, it is necessary to review the approach to a pathology that occurs so frequently, with such burdensome and complex implications. Recent research has shown that imaging methods can detect subtle neuroplastic changes in the central and peripheral nervous system, which can be correlated with neuropathic symptoms and may serve as potential markers. The aim of this paper is to review available imaging methods used for diagnosing and assessing therapeutic efficacy in CNP for both the preclinical and clinical setting. Of course, further research is required to standardize and improve detection accuracy, but available data indicate that imaging is a valuable tool that can impact the management of CNP.


Assuntos
Neuralgia , Humanos , Neuralgia/diagnóstico por imagem , Neuralgia/terapia , Sistema Nervoso Periférico , Biomarcadores , Diagnóstico por Imagem
15.
Am J Cancer Res ; 12(9): 4373-4398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225631

RESUMO

MCF7 is a commonly used luminal type A non-invasive/poor-invasive human breast cancer cell line that does not usually migrate or invade compared with MDA-MB-231 highly metastatic cells, which emphasize an invasive and migratory behavior. Under special conditions, MCF7 cells might acquire invasive features. The aberration in expression and biological functions of the jumping translocation breackpoint (JTB) protein is associated with malignant transformation of cells, based on mitochondrial dysfunction, inhibition of tumor suppressive function of TGF-ß, and involvement in cancer cell cycle. To investigate new putative functions of JTB by cellular proteomics, we analyzed the biological processes and pathways that are associated with the JTB protein downregulation. The results demonstrated that MCF7 cell line developed a more "aggressive" phenotype and behavior. Most of the proteins that were overexpressed in this experiment promoted the actin cytoskeleton reorganization that is involved in growth and metastatic dissemination of cancer cells. Some of these proteins are involved in the epithelial-mesenchymal transition (EMT) process (ACTBL2, TUBA4A, MYH14, CSPG5, PKM, UGDH, HSP90AA2, and MIF), in correlation with the energy metabolism reprogramming (PKM, UGDH), stress-response (HSP10, HSP70A1A, HSP90AA2), and immune and inflammatory response (MIF and ERp57-TAPBP). Almost all upregulated proteins in JTB downregulated condition promote viability, motility, proliferation, invasion, survival into a hostile microenvironment, metabolic reprogramming, and escaping of tumor cells from host immune control, leading to a more invasive phenotype for MCF7 cell line. Due to their downregulated condition, four proteins, such as CREBZF, KMT2B, SELENOS and CACNA1I are also involved in maintenance of the invasive phenotype of cancer cells, promoting cell proliferation, migration, invasion and tumorigenesis. Other downregulated proteins, such as MAZ, PLEKHG2, ENO1, TPI2, TOR2A, and CNNM1, may promote suppression of cancer cell growth, invasion, EMT, tumorigenic abilities, interacting with glucose and lipid metabolism, disrupting nuclear envelope stability, or suppressing apoptosis and developing anti-angiogenetic activities. Therefore, the main biological processes and pathways that may increase the tumorigenic potential of the MCF7 cells in JTB downregulated condition are related to the actin cytoskeleton organization, EMT, mitotic cell cycle, glycolysis and fatty acid metabolism, inflammatory response and macrophage activation, chemotaxis and migration, cellular response to stress condition (oxidative stress and hypoxia), transcription control, histone modification and ion transport.

16.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234736

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is one of the most widely used techniques in proteomics to achieve structural identification and characterization of proteins and peptides, including their variety of proteoforms due to post-translational modifications (PTMs) or protein-protein interactions (PPIs). MALDI-MS and MALDI tandem mass spectrometry (MS/MS) have been developed as analytical techniques to study small and large molecules, offering picomole to femtomole sensitivity and enabling the direct analysis of biological samples, such as biofluids, solid tissues, tissue/cell homogenates, and cell culture lysates, with a minimized procedure of sample preparation. In the last decades, structural identification of peptides and proteins achieved by MALDI-MS/MS helped researchers and clinicians to decipher molecular function, biological process, cellular component, and related pathways of the gene products as well as their involvement in pathogenesis of diseases. In this review, we highlight the applications of MALDI ionization source and tandem approaches for MS for analyzing biomedical relevant peptides and proteins. Furthermore, one of the most relevant applications of MALDI-MS/MS is to provide "molecular pictures", which offer in situ information about molecular weight proteins without labeling of potential targets. Histology-directed MALDI-mass spectrometry imaging (MSI) uses MALDI-ToF/ToF or other MALDI tandem mass spectrometers for accurate sequence analysis of peptide biomarkers and biological active compounds directly in tissues, to assure complementary and essential spatial data compared with those obtained by LC-ESI-MS/MS technique.


Assuntos
Pesquisa Biomédica , Proteômica , Peptídeos/química , Proteínas/química , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem
17.
Proteomes ; 10(4)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36278695

RESUMO

Immunohistochemistry (IHC) is still widely used as a morphology-based assay for in situ analysis of target proteins as specific tumor antigens. However, as a very heterogeneous collection of neoplastic diseases, breast cancer (BC) requires an accurate identification and characterization of larger panels of candidate biomarkers, beyond ER, PR, and HER2 proteins, for diagnosis and personalized treatment, without the limited availability of antibodies that are required to identify specific proteins. Top-down, middle-down, and bottom-up mass spectrometry (MS)-based proteomics approaches complement traditional histopathological tissue analysis to examine expression, modification, and interaction of hundreds to thousands of proteins simultaneously. In this review, we discuss the proteomics-based identification of dysregulated proteins in BC that are essential for the following issues: discovery and validation of new biomarkers by analysis of solid and liquid/non-invasive biopsies, cell lines, organoids and xenograft models; identification of panels of biomarkers for early detection and accurate discrimination between cancer, benign and normal tissues; identification of subtype-specific and stage-specific protein expression profiles in BC grading and measurement of disease progression; characterization of new subtypes of BC; characterization and quantitation of post-translational modifications (PTMs) and aberrant protein-protein interactions (PPI) involved in tumor development; characterization of the global remodeling of BC tissue homeostasis, diagnosis and prognostic information; and deciphering of molecular functions, biological processes and mechanisms through which the dysregulated proteins cause tumor initiation, invasion, and treatment resistance.

18.
Am J Cancer Res ; 12(4): 1784-1823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530281

RESUMO

Jumping translocation breakpoint (JTB) gene acts as a tumor suppressor or an oncogene in different malignancies, including breast cancer (BC), where it was reported as overexpressed. However, the molecular functions, biological processes and underlying mechanisms through which JTB protein causes increased cell growth, proliferation and invasion is still not fully deciphered. Our goal is to identify the functions of JTB protein by cellular proteomics approaches. MCF7 breast cancer cells were transfected with sense orientation of hJTB cDNA in HA, His and FLAG tagged CMV expression vector to overexpress hJTB and the expression levels were confirmed by Western blotting (WB). Proteins extracted from transfected cells were separated by SDS-PAGE and the in-gel digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). By comparing the proteome of cells with upregulated conditions of JTB vs control and identifying the protein dysregulation patterns, we aim to understand the function of this protein and its contribution to tumorigenesis. Gene Set Enrichment Analysis (GSEA) algorithm was performed to investigate the biological processes and pathways that are associated with the JTB protein upregulation. The results demonstrated four significantly enriched gene sets from the following significantly upregulated pathways: mitotic spindle assembly, estrogen response late, epithelial-to-mesenchymal transition (EMT) and estrogen response early. JTB protein itself is involved in mitotic spindle pathway by its role in cell division/cytokinesis, and within estrogen response early and late pathways, contributing to discrimination between luminal and mesenchymal breast cancer. Thus, the overexpressed JTB condition was significantly associated with an increased expression of ACTNs, FLNA, FLNB, EZR, MYOF, COL3A1, COL11A1, HSPA1A, HSP90A, WDR, EPPK1, FASN and FOXA1 proteins related to deregulation of cytoskeletal organization and biogenesis, mitotic spindle organization, ECM remodeling, cellular response to estrogen, proliferation, migration, metastasis, increased lipid biogenesis, endocrine therapy resistance, antiapoptosis and discrimination between different breast cancer subtypes. Other upregulated proteins for overexpressed JTB condition are involved in multiple cellular functions and pathways that become dysregulated, such as tumor microenvironment (TME) acidification, the transmembrane transport pathways, glycolytic flux, iron metabolism and oxidative stress, metabolic reprogramming, nucleocytosolic mRNA transport, transcriptional activation, chromatin remodeling, modulation of cell death pathways, stress responsive pathways, and cancer drug resistance. The downregulated proteins for overexpressed JTB condition are involved in adaptive communication between external and internal environment of cells and maintenance between pro-apoptotic and anti-apoptotic signaling pathways, vesicle trafficking and secretion, DNA lesions repair and suppression of genes involved in tumor progression, proteostasis, redox state regulation, biosynthesis of macromolecules, lipolytic pathway, carbohydrate metabolism, dysregulation of ubiquitin-mediated degradation system, cancer cell immune escape, cell-to-cell and cell-to-ECM interactions, and cytoskeletal behaviour. There were no significantly enriched downregulated pathways.

19.
Molecules ; 27(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458608

RESUMO

Mass Spectrometry (MS) allows the analysis of proteins and peptides through a variety of methods, such as Electrospray Ionization-Mass Spectrometry (ESI-MS) or Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). These methods allow identification of the mass of a protein or a peptide as intact molecules or the identification of a protein through peptide-mass fingerprinting generated upon enzymatic digestion. Tandem mass spectrometry (MS/MS) allows the fragmentation of proteins and peptides to determine the amino acid sequence of proteins (top-down and middle-down proteomics) and peptides (bottom-up proteomics). Furthermore, tandem mass spectrometry also allows the identification of post-translational modifications (PTMs) of proteins and peptides. Here, we discuss the application of MS/MS in biomedical research, indicating specific examples for the identification of proteins or peptides and their PTMs as relevant biomarkers for diagnostic and therapy.


Assuntos
Pesquisa Biomédica , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Mapeamento de Peptídeos/métodos , Peptídeos/química , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
20.
Am J Cancer Res ; 11(9): 4006-4049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659875

RESUMO

Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions (proteogenomics, proteotranscriptomics or reproductomics), several new "-omics" approaches and exciting proteomics subfields are contributing to basic and advanced understanding of these "multiple diseases termed breast cancer": phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degradomics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept (BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast cancer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and cancer-associated cells, that reflect the carcinoma's progression from a "driving mutation" and formation of the breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and intravasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in human tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and tissular level and can even identify new therapeutic target proteins in clinical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA