Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645052

RESUMO

Genomic scientists have long been promised cheaper DNA sequencing, but deep whole genomes are still costly, especially when considered for large cohorts in population-level studies. More affordable options include microarrays + imputation, whole exome sequencing (WES), or low-pass whole genome sequencing (WGS) + imputation. WES + array + imputation has recently been shown to yield 99% of association signals detected by WGS. However, a method free from ascertainment biases of arrays or the need for merging different data types that still benefits from deeper exome coverage to enhance novel coding variant detection does not exist. We developed a new, combined, "Blended Genome Exome" (BGE) in which a whole genome library is generated, an aliquot of that genome is amplified by PCR, the exome regions are selected and enriched, and the genome and exome libraries are combined back into a single tube for sequencing (33% exome, 67% genome). This creates a single CRAM with a low-coverage whole genome (2-3x) combined with a higher coverage exome (30-40x). This BGE can be used for imputing common variants throughout the genome as well as for calling rare coding variants. We tested this new method and observed >99% r 2 concordance between imputed BGE data and existing 30x WGS data for exome and genome variants. BGE can serve as a useful and cost-efficient alternative sequencing product for genomic researchers, requiring ten-fold less sequencing compared to 30x WGS without the need for complicated harmonization of array and sequencing data.

2.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38645134

RESUMO

Missense variants can have a range of functional impacts depending on factors such as the specific amino acid substitution and location within the gene. To interpret their deleteriousness, studies have sought to identify regions within genes that are specifically intolerant of missense variation 1-12 . Here, we leverage the patterns of rare missense variation in 125,748 individuals in the Genome Aggregation Database (gnomAD) 13 against a null mutational model to identify transcripts that display regional differences in missense constraint. Missense-depleted regions are enriched for ClinVar 14 pathogenic variants, de novo missense variants from individuals with neurodevelopmental disorders (NDDs) 15,16 , and complex trait heritability. Following ClinGen calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less than 20% of their expected missense variation achieve moderate support for pathogenicity. We create a missense deleteriousness metric (MPC) that incorporates regional constraint and outperforms other deleteriousness scores at stratifying case and control de novo missense variation, with a strong enrichment in NDDs. These results provide additional tools to aid in missense variant interpretation.

4.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260295

RESUMO

The Variant Call Format (VCF) is widely used in genome sequencing but scales poorly. For instance, we estimate a 150,000 genome VCF would occupy 900 TiB, making it both costly and complicated to produce and analyze. The issue stems from VCF's requirement to densely represent both reference-genotypes and allele-indexed arrays. These requirements lead to unnecessary data duplication and, ultimately, very large files. To address these challenges, we introduce the Scalable Variant Call Representation (SVCR). This representation reduces file sizes by ensuring they scale linearly with samples. SVCR achieves this by adopting reference blocks from the Genomic Variant Call Format (GVCF) and employing local allele indices. SVCR is also lossless and mergeable, allowing for N+1 and N+K incremental joint-calling. We present two implementations of SVCR: SVCR-VCF, which encodes SVCR in VCF format, and VDS, which uses Hail's native format. Our experiments confirm the linear scalability of SVCR-VCF and VDS, in contrast to the super-linear growth seen with standard VCF files. We also discuss the VDS Combiner, a scalable, open-source tool for producing a VDS from GVCFs and unique features of VDS which enable rapid data analysis. SVCR, and VDS in particular, ensure the scientific community can generate, analyze, and disseminate genetics datasets with millions of samples.

5.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36747613

RESUMO

Underrepresented populations are often excluded from genomic studies due in part to a lack of resources supporting their analyses. The 1000 Genomes Project (1kGP) and Human Genome Diversity Project (HGDP), which have recently been sequenced to high coverage, are valuable genomic resources because of the global diversity they capture and their open data sharing policies. Here, we harmonized a high quality set of 4,094 whole genomes from HGDP and 1kGP with data from the Genome Aggregation Database (gnomAD) and identified over 153 million high-quality SNVs, indels, and SVs. We performed a detailed ancestry analysis of this cohort, characterizing population structure and patterns of admixture across populations, analyzing site frequency spectra, and measuring variant counts at global and subcontinental levels. We also demonstrate substantial added value from this dataset compared to the prior versions of the component resources, typically combined via liftover and variant intersection; for example, we catalog millions of new genetic variants, mostly rare, compared to previous releases. In addition to unrestricted individual-level public release, we provide detailed tutorials for conducting many of the most common quality control steps and analyses with these data in a scalable cloud-computing environment and publicly release this new phased joint callset for use as a haplotype resource in phasing and imputation pipelines. This jointly called reference panel will serve as a key resource to support research of diverse ancestry populations.

6.
Nat Genet ; 56(1): 152-161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057443

RESUMO

Recessive diseases arise when both copies of a gene are impacted by a damaging genetic variant. When a patient carries two potentially causal variants in a gene, accurate diagnosis requires determining that these variants occur on different copies of the chromosome (that is, are in trans) rather than on the same copy (that is, in cis). However, current approaches for determining phase, beyond parental testing, are limited in clinical settings. Here we developed a strategy for inferring phase for rare variant pairs within genes, leveraging genotypes observed in the Genome Aggregation Database (v2, n = 125,748 exomes). Our approach estimates phase with 96% accuracy, both in trio data and in patients with Mendelian conditions and presumed causal compound heterozygous variants. We provide a public resource of phasing estimates for coding variants and counts per gene of rare variants in trans that can aid interpretation of rare co-occurring variants in the context of recessive disease.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Exoma/genética , Sequenciamento do Exoma , Genótipo
7.
Nature ; 625(7993): 92-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057664

RESUMO

The depletion of disruptive variation caused by purifying natural selection (constraint) has been widely used to investigate protein-coding genes underlying human disorders1-4, but attempts to assess constraint for non-protein-coding regions have proved more difficult. Here we aggregate, process and release a dataset of 76,156 human genomes from the Genome Aggregation Database (gnomAD)-the largest public open-access human genome allele frequency reference dataset-and use it to build a genomic constraint map for the whole genome (genomic non-coding constraint of haploinsufficient variation (Gnocchi)). We present a refined mutational model that incorporates local sequence context and regional genomic features to detect depletions of variation. As expected, the average constraint for protein-coding sequences is stronger than that for non-coding regions. Within the non-coding genome, constrained regions are enriched for known regulatory elements and variants that are implicated in complex human diseases and traits, facilitating the triangulation of biological annotation, disease association and natural selection to non-coding DNA analysis. More constrained regulatory elements tend to regulate more constrained protein-coding genes, which in turn suggests that non-coding constraint can aid the identification of constrained genes that are as yet unrecognized by current gene constraint metrics. We demonstrate that this genome-wide constraint map improves the identification and interpretation of functional human genetic variation.


Assuntos
Genoma Humano , Genômica , Modelos Genéticos , Mutação , Humanos , Acesso à Informação , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Frequência do Gene , Genoma Humano/genética , Mutação/genética , Seleção Genética
8.
Nat Genet ; 56(1): 162-169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036779

RESUMO

Fine-mapping aims to identify causal genetic variants for phenotypes. Bayesian fine-mapping algorithms (for example, SuSiE, FINEMAP, ABF and COJO-ABF) are widely used, but assessing posterior probability calibration remains challenging in real data, where model misspecification probably exists, and true causal variants are unknown. We introduce replication failure rate (RFR), a metric to assess fine-mapping consistency by downsampling. SuSiE, FINEMAP and COJO-ABF show high RFR, indicating potential overconfidence in their output. Simulations reveal that nonsparse genetic architecture can lead to miscalibration, while imputation noise, nonuniform distribution of causal variants and quality control filters have minimal impact. Here we present SuSiE-inf and FINEMAP-inf, fine-mapping methods modeling infinitesimal effects alongside fewer larger causal effects. Our methods show improved calibration, RFR and functional enrichment, competitive recall and computational efficiency. Notably, using our methods' posterior effect sizes substantially increases polygenic risk score accuracy over SuSiE and FINEMAP. Our work improves causal variant identification for complex traits, a fundamental goal of human genetics.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Teorema de Bayes , Herança Multifatorial , Algoritmos
9.
medRxiv ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37961173

RESUMO

Mass General Brigham, an integrated healthcare system based in the Greater Boston area of Massachusetts, annually serves 1.5 million patients. We established the Mass General Brigham Biobank (MGBB), encompassing 142,238 participants, to unravel the intricate relationships among genomic profiles, environmental context, and disease manifestations within clinical practice. In this study, we highlight the impact of ancestral diversity in the MGBB by employing population genetics, geospatial assessment, and association analyses of rare and common genetic variants. The population structures captured by the genetics mirror the sequential immigration to the Greater Boston area throughout American history, highlighting communities tied to shared genetic and environmental factors. Our investigation underscores the potency of unbiased, large-scale analyses in a healthcare-affiliated biobank, elucidating the dynamic interplay across genetics, immigration, structural geospatial factors, and health outcomes in one of the earliest American sites of European colonization.

10.
Am J Hum Genet ; 110(12): 2068-2076, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38000370

RESUMO

DNA sample contamination is a major issue in clinical and research applications of whole-genome and -exome sequencing. Even modest levels of contamination can substantially affect the overall quality of variant calls and lead to widespread genotyping errors. Currently, popular tools for estimating the contamination level use short-read data (BAM/CRAM files), which are expensive to store and manipulate and often not retained or shared widely. We propose a metric to estimate DNA sample contamination from variant-level whole-genome and -exome sequence data called CHARR, contamination from homozygous alternate reference reads, which leverages the infiltration of reference reads within homozygous alternate variant calls. CHARR uses a small proportion of variant-level genotype information and thus can be computed from single-sample gVCFs or callsets in VCF or BCF formats, as well as efficiently stored variant calls in Hail VariantDataset format. Our results demonstrate that CHARR accurately recapitulates results from existing tools with substantially reduced costs, improving the accuracy and efficiency of downstream analyses of ultra-large whole-genome and exome sequencing datasets.


Assuntos
DNA , Truta , Humanos , Animais , Análise de Sequência de DNA/métodos , Genótipo , Homozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software
11.
Perspect Biol Med ; 66(2): 225-248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37755714

RESUMO

A wide range of research uses patterns of genetic variation to infer genetic similarity between individuals, typically referred to as genetic ancestry. This research includes inference of human demographic history, understanding the genetic architecture of traits, and predicting disease risk. Researchers are not just structuring an intellectual inquiry when using genetic ancestry, they are also creating analytical frameworks with broader societal ramifications. This essay presents an ethics framework in the spirit of virtue ethics for these researchers: rather than focus on rule following, the framework is designed to build researchers' capacities to react to the ethical dimensions of their work. The authors identify one overarching principle of intellectual freedom and responsibility, noting that freedom in all its guises comes with responsibility, and they identify and define four principles that collectively uphold researchers' intellectual responsibility: truthfulness, justice and fairness, anti-racism, and public beneficence. Researchers should bring their practices into alignment with these principles, and to aid this, the authors name three common ways research practices infringe these principles, suggest a step-by-step process for aligning research choices with the principles, provide rules of thumb for achieving alignment, and give a worked case. The essay concludes by identifying support needed by researchers to act in accord with the proposed framework.

12.
Cell Genom ; 3(8): 100345, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37601974

RESUMO

Stroke is the second leading cause of death and disability worldwide. Stroke prevalence varies by sex and ancestry, possibly due to genetic heterogeneity between subgroups. We performed a genome-wide meta-analysis of 16 biobanks across multiple ancestries to study the genetics of ischemic stroke (60,176 cases, 1,310,725 controls) as part of the Global Biobank Meta-analysis Initiative (GBMI) and further combined the results with previously published MegaStroke. Five novel loci for ischemic stroke (LAMC1, CALCRL, PLSCR1, CDKN1A, and SWAP70) were identified after replication in four additional datasets. One previously reported locus showed significant ancestry heterogeneity (ABO), and one showed significant sex heterogeneity (ALDH2). The ALDH2 association was male specific (males p = 1.67e-24, females p = 0.126) and was additionally observed only in the East Asian ancestry (male) samples. These findings emphasize the need for more diverse datasets with large sample sizes to further understand the genetic predisposition of stroke in different ancestry and sex groups.

13.
Nature ; 620(7975): 839-848, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587338

RESUMO

Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome required for oxidative phosphorylation1. Heteroplasmy refers to the presence of a mixture of mtDNA alleles in an individual and has been associated with disease and ageing. Mechanisms underlying common variation in human heteroplasmy, and the influence of the nuclear genome on this variation, remain insufficiently explored. Here we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived whole-genome sequences from 274,832 individuals and perform genome-wide association studies to identify associated nuclear loci. Following blood cell composition correction, we find that mtCN declines linearly with age and is associated with variants at 92 nuclear loci. We observe that nearly everyone harbours heteroplasmic mtDNA variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to arise somatically and accumulate sharply after the age of 70 years, whereas (2) heteroplasmic indels are maternally inherited as mixtures with relative levels associated with 42 nuclear loci involved in mtDNA replication, maintenance and novel pathways. These loci may act by conferring a replicative advantage to certain mtDNA alleles. As an illustrative example, we identify a length variant carried by more than 50% of humans at position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA transcription/replication switching2,3. We find that this variant exerts cis-acting genetic control over mtDNA abundance and is itself associated in-trans with nuclear loci encoding machinery for this regulatory switch. Our study suggests that common variation in the nuclear genome can shape variation in mtCN and heteroplasmy dynamics across the human population.


Assuntos
Núcleo Celular , Variações do Número de Cópias de DNA , DNA Mitocondrial , Heteroplasmia , Mitocôndrias , Idoso , Humanos , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Estudo de Associação Genômica Ampla , Heteroplasmia/genética , Mitocôndrias/genética , Núcleo Celular/genética , Alelos , Polimorfismo de Nucleotídeo Único , Mutação INDEL , Quadruplex G
14.
Nat Commun ; 14(1): 4702, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543680

RESUMO

The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R2 increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estudo de Associação Genômica Ampla , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Fenótipo , Herança Multifatorial/genética
15.
Nat Genet ; 55(9): 1494-1502, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37640881

RESUMO

Linkage disequilibrium (LD) is the correlation among nearby genetic variants. In genetic association studies, LD is often modeled using large correlation matrices, but this approach is inefficient, especially in ancestrally diverse studies. In the present study, we introduce LD graphical models (LDGMs), which are an extremely sparse and efficient representation of LD. LDGMs are derived from genome-wide genealogies; statistical relationships among alleles in the LDGM correspond to genealogical relationships among haplotypes. We published LDGMs and ancestry-specific LDGM precision matrices for 18 million common variants (minor allele frequency >1%) in five ancestry groups, validated their accuracy and demonstrated order-of-magnitude improvements in runtime for commonly used LD matrix computations. We implemented an extremely fast multiancestry polygenic prediction method, BLUPx-ldgm, which performs better than a similar method based on the reference LD correlation matrix. LDGMs will enable sophisticated methods that scale to ancestrally diverse genetic association data across millions of variants and individuals.


Assuntos
Desequilíbrio de Ligação , Humanos , Alelos , Frequência do Gene/genética , Estudos de Associação Genética , Haplótipos/genética
16.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425834

RESUMO

DNA sample contamination is a major issue in clinical and research applications of whole genome and exome sequencing. Even modest levels of contamination can substantially affect the overall quality of variant calls and lead to widespread genotyping errors. Currently, popular tools for estimating the contamination level use short-read data (BAM/CRAM files), which are expensive to store and manipulate and often not retained or shared widely. We propose a new metric to estimate DNA sample contamination from variant-level whole genome and exome sequence data, CHARR, Contamination from Homozygous Alternate Reference Reads, which leverages the infiltration of reference reads within homozygous alternate variant calls. CHARR uses a small proportion of variant-level genotype information and thus can be computed from single-sample gVCFs or callsets in VCF or BCF formats, as well as efficiently stored variant calls in Hail VDS format. Our results demonstrate that CHARR accurately recapitulates results from existing tools with substantially reduced costs, improving the accuracy and efficiency of downstream analyses of ultra-large whole genome and exome sequencing datasets.

17.
medRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461573

RESUMO

Exome-sequencing association studies have successfully linked rare protein-coding variation to risk of thousands of diseases. However, the relationship between rare deleterious compound heterozygous (CH) variation and their phenotypic impact has not been fully investigated. Here, we leverage advances in statistical phasing to accurately phase rare variants (MAF ~ 0.001%) in exome sequencing data from 175,587 UK Biobank (UKBB) participants, which we then systematically annotate to identify putatively deleterious CH coding variation. We show that 6.5% of individuals carry such damaging variants in the CH state, with 90% of variants occurring at MAF < 0.34%. Using a logistic mixed model framework, systematically accounting for relatedness, polygenic risk, nearby common variants, and rare variant burden, we investigate recessive effects in common complex diseases. We find six exome-wide significant (P<1.68×10-7) and 17 nominally significant (P<5.25×10-5) gene-trait associations. Among these, only four would have been identified without accounting for CH variation in the gene. We further incorporate age-at-diagnosis information from primary care electronic health records, to show that genetic phase influences lifetime risk of disease across 20 gene-trait combinations (FDR < 5%). Using a permutation approach, we find evidence for genetic phase contributing to disease susceptibility for a collection of gene-trait pairs, including FLG-asthma (P=0.00205) and USH2A-visual impairment (P=0.0084). Taken together, we demonstrate the utility of phasing large-scale genetic sequencing cohorts for robust identification of the phenome-wide consequences of compound heterozygosity.

18.
Nat Hum Behav ; 7(8): 1371-1387, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386106

RESUMO

Response to survey questionnaires is vital for social and behavioural research, and most analyses assume full and accurate response by participants. However, nonresponse is common and impedes proper interpretation and generalizability of results. We examined item nonresponse behaviour across 109 questionnaire items in the UK Biobank (N = 360,628). Phenotypic factor scores for two participant-selected nonresponse answers, 'Prefer not to answer' (PNA) and 'I don't know' (IDK), each predicted participant nonresponse in follow-up surveys (incremental pseudo-R2 = 0.056), even when controlling for education and self-reported health (incremental pseudo-R2 = 0.046). After performing genome-wide association studies of our factors, PNA and IDK were highly genetically correlated with one another (rg = 0.73 (s.e. = 0.03)) and with education (rg,PNA = -0.51 (s.e. = 0.03); rg,IDK = -0.38 (s.e. = 0.02)), health (rg,PNA = 0.51 (s.e. = 0.03); rg,IDK = 0.49 (s.e. = 0.02)) and income (rg,PNA = -0.57 (s.e. = 0.04); rg,IDK = -0.46 (s.e. = 0.02)), with additional unique genetic associations observed for both PNA and IDK (P < 5 × 10-8). We discuss how these associations may bias studies of traits correlated with item nonresponse and demonstrate how this bias may substantially affect genome-wide association studies. While the UK Biobank data are deidentified, we further protected participant privacy by avoiding exploring non-response behaviour to single questions, assuring that no information can be used to associate results with any particular respondents.


Assuntos
Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Inquéritos e Questionários , Autorrelato
19.
Genome Res ; 33(6): 999-1005, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253541

RESUMO

Large-scale high-throughput sequencing data sets have been transformative for informing clinical variant interpretation and for use as reference panels for statistical and population genetic efforts. Although such resources are often treated as ground truth, we find that in widely used reference data sets such as the Genome Aggregation Database (gnomAD), some variants pass gold-standard filters, yet are systematically different in their genotype calls across genotype discovery approaches. The inclusion of such discordant sites in study designs involving multiple genotype discovery strategies could bias results and lead to false-positive hits in association studies owing to technological artifacts rather than a true relationship to the phenotype. Here, we describe this phenomenon of discordant genotype calls across genotype discovery approaches, characterize the error mode of wrong calls, provide a list of discordant sites identified in gnomAD that should be treated with caution in analyses, and present a metric and machine learning classifier trained on gnomAD data to identify likely discordant variants in other data sets. We find that different genotype discovery approaches have different sets of variants at which this problem occurs, but there are characteristic variant features that can be used to predict discordant behavior. Discordant sites are largely shared across ancestry groups, although different populations are powered for the discovery of different variants. We find that the most common error mode is that of a variant being heterozygous for one approach and homozygous for the other, with heterozygous in the genomes and homozygous reference in the exomes making up the majority of miscalls.


Assuntos
Exoma , Genética Populacional , Genótipo , Heterozigoto , Fenótipo , Polimorfismo de Nucleotídeo Único
20.
Hastings Cent Rep ; 53 Suppl 1: S2-S49, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37078667

RESUMO

In this consensus report by a diverse group of academics who conduct and/or are concerned about social and behavioral genomics (SBG) research, the authors recount the often-ugly history of scientific attempts to understand the genetic contributions to human behaviors and social outcomes. They then describe what the current science-including genomewide association studies and polygenic indexes-can and cannot tell us, as well as its risks and potential benefits. They conclude with a discussion of responsible behavior in the context of SBG research. SBG research that compares individuals within a group according to a "sensitive" phenotype requires extra attention to responsible conduct and to responsible communication about the research and its findings. SBG research (1) on sensitive phenotypes that (2) compares two or more groups defined by (a) race, (b) ethnicity, or (c) genetic ancestry (where genetic ancestry could easily be misunderstood as race or ethnicity) requires a compelling justification to be conducted, funded, or published. All authors agree that this justification at least requires a convincing argument that a study's design could yield scientifically valid results; some authors would additionally require the study to have a socially favorable risk-benefit profile.


Assuntos
Comunicação , Genômica , Humanos , Fenótipo , Responsabilidade Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA