Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicon ; 143: 108-117, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29355573

RESUMO

For the first time the impedance-based xCELLigence real-time cell analysis system was used to measure the myotoxicity of sea snake venom. With a focus on the spine-bellied sea snake (Hydrophis curtus), the venom of four sea snake species and three terrestrial snake species were compared for myotoxicity against a human skeletal muscle cell line (HSkMC). Hydrophis curtus venom was also tested on a human cardiac muscle cell line (HCM). Surprisingly, all four sea snake venoms tested on HSkMC produced an initial 100-280% rise in xCELLigence cell index that peaked within the first two hours before falling. The cell index rise of H. curtus venom was correlated with the WST-1 cell proliferation assay, which demonstrated an increase in mitochondrial metabolism. The myotoxicity of H. curtus was 4.7-8.2 fold less potent than the other sea snakes tested, the Australian beaked sea snake (Hydrophis zweifeli), the elegant sea snake (Hydrophis elegans) and the olive sea snake (Aipysurus laevis). If our cell-based results translate to H. curtus envenomations, this implies that H. curtus would be less myotoxic than the other three. Yet the myotoxicity of H. curtus venom to cardiac muscle cells was nine times weaker than for skeletal muscle cells, providing evidence that the venom has a selective effect on skeletal muscle cells. This evidence, combined with the slow-acting nature of the venom, supports a digestive role for sea snake myotoxins.


Assuntos
Venenos Elapídicos/toxicidade , Células Musculares/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hydrophiidae , Músculo Esquelético/citologia
2.
Int J Mol Sci ; 18(12)2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29231898

RESUMO

The spine-bellied sea snake (Hydrophis curtus) is known to cause human deaths, yet its venom composition has not yet been proteomically characterised. An indepth proteomic analysis was performed on H. curtus venom from two different seasons, January and June, corresponding to adults and subadults, respectively. Venoms from adult and subadult H. curtus individuals were compared using reversedphase high-performance liquid chromatography (RP-HPLC), matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) mass spectrometry and liquid chromatography electrospray ionisation mass spectrometry (LC-ESI-MS) to detect intraspecific variation, and the molecular weight data obtained with ESIMS were used to assess toxin diversity. RPHPLC and LCESIMS/MS were used to characterise the venom proteome and estimate the relative abundances of protein families present. The most abundant protein family in January and June venoms is phospholipase A2 (PLA2: January 66.7%; June 54.5%), followed by threefinger toxins (3FTx: January 30.4%; June 40.4%) and a minor component of cysteine-rich secretory proteins (CRISP: January 2.5%; June 5%). Trace amounts of snake venom metalloproteinases (SVMP), C-type lectins and housekeeping and regulatory proteins were also found. Although the complexity of the venom is low by number of families present, each family contained a more diverse set of isoforms than previously reported, a finding that may have implications for the development of next-generation sea snake antivenoms. Intraspecific variability was shown to be minor with one obvious exception of a 14,157-Da protein that was present in some January (adult) venoms, but not at all in June (subadult) venoms. There is also a greater abundance of short-chain neurotoxins in June (subadult) venom compared with January (adult) venom. These differences potentially indicate the presence of seasonal, ontogenetic or sexual variation in H. curtus venom.


Assuntos
Venenos Elapídicos/metabolismo , Hydrophiidae/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Toxinas Biológicas/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Hydrophiidae/classificação , Espectrometria de Massas/métodos , Fosfolipases A2/metabolismo , Estações do Ano , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA