Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(25): E5679-E5687, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29871953

RESUMO

Microbial growth and division are fundamental processes relevant to many areas of life science. Of particular interest are homeostasis mechanisms, which buffer growth and division from accumulating fluctuations over multiple cycles. These mechanisms operate within single cells, possibly extending over several division cycles. However, all experimental studies to date have relied on measurements pooled from many distinct cells. Here, we disentangle long-term measured traces of individual cells from one another, revealing subtle differences between temporal and pooled statistics. By analyzing correlations along up to hundreds of generations, we find that the parameter describing effective cell size homeostasis strength varies significantly among cells. At the same time, we find an invariant cell size, which acts as an attractor to all individual traces, albeit with different effective attractive forces. Despite the common attractor, each cell maintains a distinct average size over its finite lifetime with suppressed temporal fluctuations around it, and equilibration to the global average size is surprisingly slow ([Formula: see text] cell cycles). To show a possible source of variable homeostasis strength, we construct a mathematical model relying on intracellular interactions, which integrates measured properties of cell size with those of highly expressed proteins. Effective homeostasis strength is then influenced by interactions and by noise levels and generally varies among cells. A predictable and measurable consequence of variable homeostasis strength appears as distinct oscillatory patterns in cell size and protein content over many generations. We discuss implications of our results to understanding mechanisms controlling division in single cells and their characteristic timescales.


Assuntos
Escherichia coli/citologia , Escherichia coli/fisiologia , Homeostase/fisiologia , Ciclo Celular/fisiologia , Tamanho Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA