Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38138331

RESUMO

In this work, high-frequency forced vibrations of lateral field excitation (LFE) devices with stepped electrodes based on monoclinic crystals GdCOB are modeled, and the influence laws of the device parameters (the step number, size, and thickness of the stepped electrodes) on the energy-trapping effects of the device are revealed. The results show that the step number has a significant effect on the energy-trapping effect of the device: with the increase in the step number, the stronger energy-trapping effect of the device can be obtained; with the increase in the thickness difference of two layers of electrodes, the energy-trapping effect of the device becomes stronger; with the increase in the difference of the electrode radius, the energy-trapping effect of the device is enhanced gradually. The results of this work can provide an important theoretical basis for the design of stepped-electrode LFE resonators and sensors with high-quality factors based on monoclinic crystals.

2.
Micromachines (Basel) ; 14(6)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37374721

RESUMO

The relaxor ferroelectric single crystal (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) has high piezoelectric constants, and thus has a good application prospect in the field of highly sensitive piezoelectric sensors. In this paper, for relaxor ferroelectric single crystal PMN-PT, the bulk acoustic wave characteristics on pure- and pseudo-lateral-field-excitation (pure- and pseudo-LFE) modes are investigated. LFE piezoelectric coupling coefficients and acoustic wave phase velocities for PMN-PT crystals in different cuts and electric field directions are calculated. On this basis, the optimal cuts of pure-LFE and pseudo-LFE modes of relaxor ferroelectric single crystal PMN-PT are obtained, namely, (zxt)45° and (zxtl)90°/90°, respectively. Finally, finite element simulations are carried out to verify the cuts of pure-LFE and pseudo-LFE modes. The simulation results show that the PMN-PT acoustic wave devices in pure-LFE mode have good energy-trapping effects. For PMN-PT acoustic wave devices in pseudo-LFE mode, when the device is in air, no obvious energy-trapping emerges; when the water (as a virtual electrode) is added to the surface of the crystal plate, an obvious resonance peak and the energy-trapping effect appears. Therefore, the PMN-PT pure-LFE device is suitable for gas-phase detections. While the PMN-PT pseudo-LFE device is suitable for liquid-phase detections. The above results verify the correctness of the cuts of the two modes. The research results provide an important basis for the development of highly sensitive LFE piezoelectric sensors based on relaxor ferroelectric single crystal PMN-PT.

3.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679441

RESUMO

Backward acoustic waves are characterized by oppositely directed phase and group velocities. These waves can exist in isotropic and piezoelectric plates. They can be detected using a set of interdigital transducers with different spatial periods located on the same piezoelectric substrate. In this paper, the effect of a nonviscous and nonconductive liquid on the characteristics of a first-order backward antisymmetric wave in a YX plate of lithium niobate is studied theoretically and experimentally. It is shown that the presence of liquid does not lead to the transformation or disappearance of this wave. It is shown that these waves are close to the cutoff frequency and are characterized by the presence of a point with zero group velocity. The design of a liquid sensor based on these waves is proposed.


Assuntos
Acústica , Som , Transdutores
4.
Sensors (Basel) ; 22(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35591285

RESUMO

Based on Mindlin's first-order plate theory, the high-frequency vibrations of piezoelectric bulk acoustic wave array sensors under lateral-field-excitation based on crystals with 3 m point group are analyzed, and the spectral-frequency relationships are solved, based on which, the optimal length-thickness ratio of the piezoelectric crystal plate is determined. Then, the dynamic capacitance diagram is obtained by a forced vibration analysis of the piezoelectric crystal plate. The resonant mode conforming to good energy trapping is further obtained. The frequency interferences between different resonator units are calculated, and the influences of the spacing between two resonant units on the frequency interference with different electrode widths and spacings are analyzed. Finally, the safe spacings between resonator units are obtained. As the electrode spacing value of the left unit increases, the safe spacing d0 between the two resonator units decreases, and the frequency interference curve tends to zero faster. When the electrode spacings of two resonator units are equal, the safe distance is largest, and the frequency interference curve tends to zero slowest. The theoretical results are verified further by finite element method. The analysis model of high frequency vibrations of strongly coupled piezoelectric bulk acoustic array device based on LiTaO3 crystals with 3 m point group proposed in this paper can provide reliable theoretical guidance for size optimization designs of strongly coupled piezoelectric array sensors under lateral-field-excitation.

5.
Sensors (Basel) ; 21(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200531

RESUMO

In this research, beam focusing in lithium niobate plate was studied for fundamental anti-symmetric (A0) and symmetric (S0) Lamb waves, and the shear-horizontal (SH0) wave of zero-order. Using the finite element method, appropriate configuration of the interdigital transducer with arc-like electrodes was modeled accounting for the anisotropy of the slowness curves and dispersion of the modes in the plate. Profiles of the focalized acoustic beams generated by the proposed transducer were theoretically analyzed. Based on the result of the analysis, relevant delay lines were fabricated and transfer functions (insertion loss) of the line were measured for SH0 wave in YX-lithium niobate plate. Using an electron scanning microscope, distribution of the electric fields of the same wave were visualized. The results of this study may be useful for hybrid devices and sensors combining nano and acoustoelectronic principles.

6.
Sensors (Basel) ; 21(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806805

RESUMO

Evanescent acoustic waves are characterized by purely imaginary or complex wavenumbers. Earlier, in 2019 by using a three dimensional (3D) finite element method (FEM) the possibility of the excitation and registration of such waves in the piezoelectric plates was theoretically shown. In this paper the set of the acoustically isolated interdigital transducers (IDTs) with the different spatial periods for excitation and registration of the evanescent acoustic wave in Y-cut X-propagation direction of lithium niobate (LiNbO3) plate was specifically calculated and produced. As a result, the possibility to excite and register the evanescent acoustic wave in the piezoelectric plates was experimentally proved for the first time. The evanescent nature of the registered wave has been established. The theoretical results turned out to be in a good agreement with the experimental ones. The influence of an infinitely thin layer with arbitrary conductivity placed on a plate surface was also investigated. It has been shown that the frequency region of an evanescent acoustic wave existence is very sensitive to the changes of the electrical boundary conditions. The results obtained may be used for the development of the method of the analysis of thin films electric properties based on the study of evanescent waves.

7.
Ultrasonics ; 99: 105961, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31323560

RESUMO

This paper presents the results of the theoretical and 2D FEM modeling excitation and detection of evanescent acoustic waves in piezoelectric plates. By application of 2D ordinary differential equations derived by Auld, we obtained the dispersion curves of A1 and SH1 waves in YX LiNbO3 and YX KNbO3 plates in proximity to a zero group velocity point. The branches corresponding to evanescent acoustic waves are distinguished. A frequency range where real part of evanescent wave velocity is more than imaginary one was found. In this region evanescent mode is characterized by opposite directions of the phase and group velocities, i.e. this is backward wave. The theoretical analysis was verified in commercial 2D FEM software COMSOL 5.3. By modeling a set of interdigital transducers placed on the surface of Y-cut LiNbO3 wafer with various values of the spatial period we found the resonant frequencies corresponding to evanescent A1 mode. Due to proximity of this wave to a zero group velocity point its properties should be extremely sensitive to change of waveguide quality and ambient air. This is open the possibility to use these waves for development of high sensitive sensors and for nondestructive waveguide analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA