Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887141

RESUMO

The integration of Raspberry Pi miniature computer systems with microfluidics has revolutionised the development of low-cost and customizable analytical systems in life science laboratories. This review explores the applications of Raspberry Pi in microfluidics, with a focus on imaging, including microscopy and automated image capture. By leveraging the low cost, flexibility and accessibility of Raspberry Pi components, high-resolution imaging and analysis have been achieved in direct mammalian and bacterial cellular imaging and a plethora of image-based biochemical and molecular assays, from immunoassays, through microbial growth, to nucleic acid methods such as real-time-qPCR. The control of image capture permitted by Raspberry Pi hardware can also be combined with onboard image analysis. Open-source hardware offers an opportunity to develop complex laboratory instrumentation systems at a fraction of the cost of commercial equipment and, importantly, offers an opportunity for complete customisation to meet the users' needs. However, these benefits come with a trade-off: challenges remain for those wishing to incorporate open-source hardware equipment in their own work, including requirements for construction and operator skill, the need for good documentation and the availability of rapid prototyping such as 3D printing plus other components. These advances in open-source hardware have the potential to improve the efficiency, accessibility, and cost-effectiveness of microfluidic-based experiments and applications.


Assuntos
Disciplinas das Ciências Biológicas , Microfluídica , Animais , Laboratórios , Computadores , Impressão Tridimensional , Mamíferos
2.
Antibiotics (Basel) ; 12(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37760660

RESUMO

The time-consuming nature of current methods for detecting antimicrobial resistance (AMR) to guide mastitis treatment and for surveillance, drives innovation towards faster, easier, and more portable technology. Rapid on-farm testing could guide antibiotic selection, reducing misuse that contributes to resistance. We identify challenges that arise when developing miniaturized antibiotic susceptibility tests (AST) for rapid on-farm use directly in milk. We experimentally studied three factors: sample matrix (specifically milk or spoiled milk); the commensal bacteria found in fresh bovine milk; and result time on the performance of miniaturised AST. Microfluidic "dip-and-test" devices made from microcapillary film (MCF) were able to monitor Gram-negative bacterial growth colourimetrically even in the presence of milk and yoghurt (used to simulate spoiled milk samples), as long as this sample matrix was diluted 1:5 or more in growth medium. Growth detection kinetics using resazurin was not changed by milk at final concentrations of 20% or lower, but a significant delay was seen with yoghurt above 10%. The minimum inhibitory concentration (MIC) for ciprofloxacin and gentamicin was increased in the presence of higher concentrations of milk and yoghurt. When diluted to 1% all observed MIC were within range, indicating dilution may be sufficient to avoid milk matrix interfering with microfluidic AST. We found a median commensal cell count of 6 × 105 CFU/mL across 40 healthy milk samples and tested if these bacteria could alter microfluidic AST. We found that false susceptibility may be observed at early endpoint times if testing some pathogen and commensal mixtures. However, such errors are only expected to occur when a susceptible commensal organism is present at higher cell density relative to the resistant pathogen, and this can be avoided by reading at later endpoints, leading to a trade-off between accuracy and time-to-result. We conclude that with further optimisation, and additional studies of Gram-positive organisms, it should be possible to obtain rapid results for microfluidic AST, but a trade-off is needed between time-to-result, sample dilution, and accuracy.

3.
Micromachines (Basel) ; 13(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36422401

RESUMO

Antibiotic susceptibility testing is vital to tackle the emergence and spread of antimicrobial resistance. Inexpensive digital CMOS cameras can be converted into portable digital microscopes using 3D printed x-y-z stages. Microscopic examination of bacterial motility can rapidly detect the response of microbes to antibiotics to determine susceptibility. Here, we present a new simple microdevice-miniature microscope cell measurement system for multiplexed antibiotic susceptibility testing. The microdevice is made using melt-extruded plastic film strips containing ten parallel 0.2 mm diameter microcapillaries. Two different antibiotics, ceftazidime and gentamicin, were prepared in Mueller-Hinton agar (0.4%) to produce an antibiotic-loaded microdevice for simple sample addition. This combination was selected to closely match current standard methods for both antibiotic susceptibility testing and motility testing. Use of low agar concentration permits observation of motile bacteria responding to antibiotic exposure as they enter capillaries. This device fits onto the OpenFlexure 3D-printed digital microscope using a Raspberry Pi computer and v2 camera, avoiding need for expensive laboratory microscopes. This inexpensive and portable digital microscope platform had sufficient magnification to detect motile bacteria, yet wide enough field of view to monitor bacteria behavior as they entered antibiotic-loaded microcapillaries. The image quality was sufficient to detect how bacterial motility was inhibited by different concentrations of antibiotic. We conclude that a 3D-printed Raspberry Pi-based microscope combined with disposable microfluidic test strips permit rapid, easy-to-use bacterial motility detection, with potential for aiding detection of antibiotic resistance.

4.
HardwareX ; 12: e00377, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36437840

RESUMO

Digital imaging permits the quantitation of many experiments, such as microbiological growth assays, but laboratory digital imaging systems can be expensive and too specialised. The Raspberry Pi camera platform makes automated, controlled imaging affordable with accessible customisation. When combined with open source software and open-source 3D printed hardware, the control over image quality and capture of this platform permits the rapid development of novel instrumentation. Here we present "PiRamid", a compact, portable, and inexpensive enclosure for autonomous imaging both in the laboratory and in the field. The modular three-piece 3D printed design makes it easy to incorporate different camera systems or lighting configurations (e.g., single wavelength LED for fluorescence). The enclosed design allows complete control of illumination unlike a conventional digital camera or smartphone, on a tripod or handheld, under ambient lighting. The stackable design permits rapid sample addition or camera focus adjustment, with a corresponding change in magnification and resolution. The entire unit is small enough to fit within a microbiological incubator, and cheap enough (∼£100) to scale out for larger parallel experiments. Simply, Python scripts fully automate illumination and image capture for small-scale experiments with an ∼110×85 mm area at 70-90 µm resolution. We demonstrate the versatility of PiRamid by capturing time-resolved, quantitative image data for a wide range of assays. Bacterial growth kinetics was captured for conventional microbiology (agar Petri dishes), 3D printed custom microbiology labware and microfluidic microbiology. To illustrate application beyond microbiology, we demonstrate time-lapse imaging of crystal growth and degradation of salad leaves. Minor modifications permit epi-illumination by addition of a LED ring to the camera module. We conclude that PiRamid permits inexpensive digital capture and quantitation of a wide range of experiments by time-lapse imaging to simplify both laboratory and field imaging.

5.
PLoS Negl Trop Dis ; 16(4): e0010266, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35389998

RESUMO

Laboratory diagnosis of dengue virus (DENV) infection including DENV serotyping requires skilled labor and well-equipped settings. DENV NS1 lateral flow rapid test (LFT) provides simplicity but lacks ability to identify serotype. A simple, economical, point-of-care device for serotyping is still needed. We present a gravity driven, smartphone compatible, microfluidic device using microcapillary film (MCF) to perform multiplex serotype-specific immunoassay detection of dengue virus NS1. A novel device-termed Cygnus-with a stackable design allows analysis of 1 to 12 samples in parallel in 40 minutes. A sandwich enzyme immunoassay was developed to specifically detect NS1 of all four DENV serotypes in one 60-µl plasma sample. This test aims to bridge the gap between rapid LFT and laboratory microplate ELISAs in terms of sensitivity, usability, accessibility and speed. The Cygnus NS1 assay was evaluated with retrospective undiluted plasma samples from 205 DENV infected patients alongside 50 febrile illness negative controls. Against the gold standard RT-PCR, clinical sensitivity for Cygnus was 82% in overall (with 78, 78, 80 and 76% for DENV1-4, respectively), comparable to an in-house serotyping NS1 microplate ELISA (82% vs 83%) but superior to commercial NS1-LFT (82% vs 74%). Specificity of the Cygnus device was 86%, lower than that of NS1-microplate ELISA and NS1-LFT (100% and 98%, respectively). For Cygnus positive samples, identification of DENV serotypes DENV2-4 matched those by RT-PCR by 100%, but for DENV1 capillaries false positives were seen, suggesting an improved DENV1 capture antibody is needed to increase specificity. Overall performance of Cygnus showed substantial agreement to NS1-microplate ELISA (κ = 0.68, 95%CI 0.58-0.77) and NS1-LFT (κ = 0.71, 95%CI 0.63-0.80). Although further refinement for DENV-1 NS1 detection is needed, the advantages of multiplexing and rapid processing time, this Cygnus device could deliver point-of-care NS1 antigen testing including serotyping for timely DENV diagnosis for epidemic surveillance and outbreak prediction.


Assuntos
Vírus da Dengue , Dengue , Anticorpos Monoclonais , Anticorpos Antivirais , Antígenos Virais , Ensaio de Imunoadsorção Enzimática , Humanos , Estudos Retrospectivos , Sensibilidade e Especificidade , Sorogrupo , Smartphone , Proteínas não Estruturais Virais/genética
6.
RSC Adv ; 11(60): 38258-38263, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498063

RESUMO

Rapid and portable direct tests for antibiotic resistance in human clinical samples such as urine could reduce misuse of precious antimicrobials, by allowing treatment decisions to be informed by microfluidic diagnostic tests. We demonstrate that the variable composition of human urine can significantly affect the antibiotic minimum inhibitory concentration (MIC) measured using microfluidic devices. The urine sample matrix interference was not observed in pooled normal urine, emphasising the critical importance of assessing matrix interference with a wide range of individual urine samples, rather than a few standardised or pooled controls. Both dilution into assay medium and inclusion of buffer could reduce the matrix interference, but dilution may affect analytical sensitivity by increasing the minimum bacterial cell density needed in a sample for growth to be detected, especially for miniaturised devices that test small sample volumes. We conclude it is vital to fully assess and optimise novel analytical microbiology tools using multiple individual urine samples, otherwise the high variation in matrix interference will compromise the clinical performance of these rapid diagnostics that are urgently needed to tackle the global threat of antimicrobial resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA