Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Genom ; 2(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36742369

RESUMO

Gene expression is controlled by transcription factors (TFs) that bind cognate DNA motif sequences in cis-regulatory elements (CREs). The combinations of DNA motifs acting within homeostasis and disease, however, are unclear. Gene expression, chromatin accessibility, TF footprinting, and H3K27ac-dependent DNA looping data were generated and a random-forest-based model was applied to identify 7,531 cell-type-specific cis-regulatory modules (CRMs) across 15 diploid human cell types. A co-enrichment framework within CRMs nominated 838 cell-type-specific, recurrent heterotypic DNA motif combinations (DMCs), which were functionally validated using massively parallel reporter assays. Cancer cells engaged DMCs linked to neoplasia-enabling processes operative in normal cells while also activating new DMCs only seen in the neoplastic state. This integrative approach identifies cell-type-specific cis-regulatory combinatorial DNA motifs in diverse normal and diseased human cells and represents a general framework for deciphering cis-regulatory sequence logic in gene regulation.

2.
Mol Cell ; 73(4): 830-844.e12, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30639242

RESUMO

Proximity-dependent biotin labeling (BioID) may identify new targets for cancers driven by difficult-to-drug oncogenes such as Ras. Therefore, BioID was used with wild-type (WT) and oncogenic mutant (MT) H-, K-, and N-Ras, identifying known interactors, including Raf and PI3K, as well as a common set of 130 novel proteins proximal to all Ras isoforms. A CRISPR screen of these proteins for Ras dependence identified mTOR, which was also found proximal to MT Ras in human tumors. Oncogenic Ras directly bound two mTOR complex 2 (mTORC2) components, mTOR and MAPKAP1, to promote mTORC2 kinase activity at the plasma membrane. mTORC2 enabled the Ras pro-proliferative cell cycle transcriptional program, and perturbing the Ras-mTORC2 interaction impaired Ras-dependent neoplasia in vivo. Combining proximity-dependent proteomics with CRISPR screening identified a new set of functional Ras-associated proteins, defined mTORC2 as a new direct Ras effector, and offers a strategy for finding new proteins that cooperate with dominant oncogenes.


Assuntos
Transformação Celular Neoplásica/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neoplasias/metabolismo , Proteoma , Proteínas ras/metabolismo , Animais , Sítios de Ligação , Sistemas CRISPR-Cas , Células CACO-2 , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos Pelados , Camundongos SCID , Camundongos Transgênicos , Mutação , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteômica/métodos , Carga Tumoral , Proteínas ras/genética
3.
Nat Methods ; 15(3): 207-212, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29400715

RESUMO

RNA-protein interactions play numerous roles in cellular function and disease. Here we describe RNA-protein interaction detection (RaPID), which uses proximity-dependent protein labeling, based on the BirA* biotin ligase, to rapidly identify the proteins that bind RNA sequences of interest in living cells. RaPID displays utility in multiple applications, including in evaluating protein binding to mutant RNA motifs in human genetic disorders, in uncovering potential post-transcriptional networks in breast cancer, and in discovering essential host proteins that interact with Zika virus RNA. To improve the BirA*-labeling component of RaPID, moreover, a new mutant BirA* was engineered from Bacillus subtilis, termed BASU, that enables >1,000-fold faster kinetics and >30-fold increased signal-to-noise ratio over the prior standard Escherichia coli BirA*, thereby enabling direct study of RNA-protein interactions in living cells on a timescale as short as 1 min.


Assuntos
Biotina/química , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Virais/metabolismo , Zika virus/metabolismo , Bacillus subtilis/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Neurônios/citologia , Neurônios/metabolismo , RNA/química , RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Zika virus/genética
4.
PLoS One ; 12(4): e0176370, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28445541

RESUMO

Canine oral mucosal melanoma is an aggressive malignant neoplasm and is characterized by local infiltration and a high metastatic potential. The disease progression is similar to that of human oral melanomas. Whereas human cutaneous melanoma is primarily driven by activating mutations in Braf (60%) or Nras (20%), human mucosal melanoma harbors these mutations much less frequently. This makes therapeutic targeting and research modeling of the oral form potentially different from that of the cutaneous form in humans. Similarly, research has found only rare Nras mutations and no activating Braf mutations in canine oral melanomas, but they are still reliant on MAPK signaling. IQGAP1 is a signaling scaffold that regulates oncogenic ERK1/2 MAPK signaling in human Ras- and Raf- driven cancers, including melanomas. To investigate whether IQGAP1 is a potential target in canine melanoma, we examined the expression and localization of IQGAP1 in primary canine melanomas and canine oral melanoma cell lines obtained from the University of California-Davis. Using CRISPR/Cas9 knockout of IQGAP1, we examined effects on downstream ERK1/2 pathway activity and assayed proliferation of cell lines when treated with a peptide that blocks the interaction between IQGAP1 and ERK1/2. We observed that canine IQGAP1 is expressed and localizes to a similar extent in both human and canine melanoma by qPCR, Western blot, and immunofluorescence. Deletion of IQGAP1 reduces MAPK pathway activation in cell lines, similar to effects seen in human BrafV600E cell lines. Additionally, we demonstrated reduced proliferation when these cells are treated with a blocking peptide in vitro.


Assuntos
Melanoma/patologia , Neoplasias Bucais/patologia , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cães , Técnicas de Inativação de Genes , Humanos , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/metabolismo , Camundongos , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Bucais/metabolismo , Mutação , Oncogenes , Fosforilação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Piridonas/toxicidade , Pirimidinonas/toxicidade , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Proteínas Ativadoras de ras GTPase/genética
5.
Genome Res ; 24(5): 751-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24443471

RESUMO

Thousands of putative enhancers are characterized in the human genome, yet few have been shown to have a functional role in cancer progression. Inhibiting oncokinases, such as EGFR, ALK, ERBB2, and BRAF, is a mainstay of current cancer therapy but is hindered by innate drug resistance mediated by up-regulation of the HGF receptor, MET. The mechanisms mediating such genomic responses to targeted therapy are unknown. Here, we identify lineage-specific enhancers at the MET locus for multiple common tumor types, including a melanoma lineage-specific enhancer 63 kb downstream from the MET TSS. This enhancer displays inducible chromatin looping with the MET promoter to up-regulate MET expression upon BRAF inhibition. Epigenomic analysis demonstrated that the melanocyte-specific transcription factor, MITF, mediates this enhancer function. Targeted genomic deletion (<7 bp) of the MITF motif within the MET enhancer suppressed inducible chromatin looping and innate drug resistance, while maintaining MITF-dependent, inhibitor-induced melanoma cell differentiation. Epigenomic analysis can thus guide functional disruption of regulatory DNA to decouple pro- and anti-oncogenic functions of a dominant transcription factor and block innate resistance to oncokinase therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Humanos , Indóis/farmacologia , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Regiões Promotoras Genéticas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Sulfonamidas/farmacologia , Transcriptoma , Vemurafenib
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA