Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(38): 34235-34248, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37780028

RESUMO

Microplastics (MPs)-i.e., plastic particles less than 5 mm in length-are becoming a growing environmental concern due to their potential ecotoxicological impacts on aquatic ecosystems. In India, MPs contamination is a significantly growing problem due to increased plastic production as well as its low rate of recycling. As a result, MPs research work in India has gained considerable attention in the last two decades. The objective of this study is to conduct a comprehensive review of the existing scientific literature on MPs in freshwater ecosystems (e.g., lakes and rivers) of India. A bibliographical search was used to conduct the literature review across a number of databases including ScienceDirect, Google Scholar, and ResearchGate. We found that in comparison to the marine ecosystem the source, transport, and fate of MPs in freshwater ecosystems of India are still underexplored, and we found only 18 relevant papers. This review work reveals that there is no standard procedure for separating MPs from water and sediment samples, and as a result, comparing the results was a challenging task. The larger MPs (>500 µm) in water and sediments were identified most commonly using the attenuated total reflection (ATR) Fourier Transform Infrared (FTIR) spectroscopy technique (ATR-FTIR), whereas smaller-sized MPs (<500 µm) were identified using FTIR fitted with a confocal microscope, also known as µ-FTIR imaging or chemical imaging. We found that white-colored fibers and fragments of polypropylene (PP), polyethylene terephthalate (PET), and polyethylene (PE) were the most common polymer types in the freshwater ecosystems of India. Although research on MPs in freshwater ecosystems of India has gained momentum over the past decade, the literature review reveals a limited understanding of the impact of MPs' weathering patterns, the role of biofouling, and the role of water hyacinths on freshwater ecosystem services in India. Furthermore, the fluxes of MPs to the Indian oceans are not constrained, and atmospheric transport in high-altitude mountains, which have already been made fragile by climate change, has not been fully investigated. This study, therefore, calls for additional assessments of MPs in freshwater ecosystems-particularly in the central parts of India.

2.
Mar Pollut Bull ; 175: 113337, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35093779

RESUMO

The present study was carried out to determine the characteristics, distribution, and abundance of plastic debris in 25 sediment samples collected from the Poompuhar beach, southeast coast of India. The result reveals that the mean plastic debris abundance was 42 ± 27 particles/m2 dry weight (dw) (1 SD, n = 25) with higher concentrations in the river mouth. The dominant shapes in the study area were fragment (70.7%), followed by fiber (20.7%), and pellet-shaped (8.6%). The dominant colors of the plastic debris were: white-colored (47%) followed by blue (28%) and green (14%). The study further reveals that the dominant polymer type was polyethylene (PE, 63.4%), followed by nylon (PA, 16.9), polyvinyl chloride (PVC, 15.5%), polypropylene (PP, 3.1%), and polystyrene (PS, 1.1%). In the study area, the main source of plastic debris was from land-based fishing and tourism activities, and rainwater runoff from the Cauvery River.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Índia , Microplásticos , Poluentes Químicos da Água/análise
3.
Chemosphere ; 290: 133354, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34929278

RESUMO

In this study, we assess the magnitude, type, and sources of microplastic (MP) in lake bottom sediments collected from freshwater Anchar Lake, located in the Kashmir Valley, Northwest Himalaya. The MP identification was done on twenty-four lake bottom sediment samples under a stereo-microscope, and their polymer compositions were characterized using an Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The study reveals that 606 ± 360 (average ± SD, n = 24) numbers of MP were present per kilogram of dry sediment samples, with fibers (91%), fragments/films (8%), and pellets (1%) dominating the shape groups. Polyamide (PA, 96%) was the dominant polymer composition present in the sediment samples, followed by polyethylene terephthalate (PET, 1.4%), polystyrene (PS, 1.4%), polyvinyl chloride (PVC, 0.9%), and polypropylene (PP, 0.7%). Polymer Hazard Index (PHI) and Pollution Load Index (PLI) were used to evaluate the quality of sediments. It was noted that high PHI values (>1000) were due to the presence of PVC polymer. According to PLI values, sediments in the Anchar lake are less contaminated with MP. We conclude that MP in the Anchar Lake have a complex source derived mostly from the automobile, textile, and packaging industries.


Assuntos
Microplásticos , Poluentes Químicos da Água , Altitude , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Plásticos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA